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Preface

Compiler design is a subject which many believe to be fundamental and vital to
computer science. It is a subject which has been studied intensively since the
early 1950’s and continues to be an important research field today. Compiler
design is an important part of the undergraduate curriculum for many reasons:
(1) It provides students with a better understanding of and appreciation for
programming languages. (2) The techniques used in compilers can be used in
other applications with command languages. (3) It provides motivation for the
study of theoretic topics. (4) It is a good vehicle for an extended programming
project.

There are several compiler design textbooks available today, but most have
been written for graduate students. Here at Rowan University, our students
have had difficulty reading these books. However, I felt it was not the subject
matter that was the problem, but the way it was presented. I was sure that if
concepts were presented at a slower pace, with sample problems and diagrams to
illustrate the concepts, that our students would be able to master the concepts.
This is what I have attempted to do in writing this book.

This book is a revision of earlier editions that were written for Pascal and
C++ based curricula. As many computer science departments have moved to
Java as the primary language in the undergraduate curriculum, I have produced
this edition to accommodate those departments. This book is not intended to
be strictly an object- oriented approach to compiler design. Though most Java
compilers compile to an intermediate form known as Byte Code, the approach
taken here is a more traditional one in which we compile to native code for a
particular machine.

The most essential prerequisites for this book are courses in Java application
programming, Data Structures, Assembly Language or Computer Architecture,
and possibly Programming Languages. If the student has not studied formal
languages and automata, this book includes introductory sections on these the-
oretic topics, but in this case it is not likely that all seven chapters will be
covered in a one semester course. Students who have studied the theory will be
able to skip the preliminary sections (2.0, 3.0, 4.0) without loss of continuity.

The concepts of compiler design are applied to a case study which is an
implementation of a subset of Java which I call Decaf. Chapters 2, 4, 5, and
6 include a section devoted to explaining how the relevant part of the Decaf
compiler is designed. This public domain software is presented in full in the

v



vi PREFACE

appendices and is available on the Internet. Students can benefit by enhancing
or changing the Decaf compiler provided.

Chapters 6 and 7 focus on the back end of the compiler (code generation and
optimization). Here I rely on a fictitious computer, called Mini, as the target
machine. I use a fictitious machine for three reasons: (1) I can design it for
simplicity so that the compiler design concepts are not obscured by architectural
requirements, (2) It is available to anyone who has a C compiler (the Mini
simulator, written in C, is available also), and (3) the teacher or student can
modify the Mini machine to suit his/her tastes.

Chapter 7 includes only a brief description of optimization techniques since
there is not enough time in a one semester course to delve into these topics, and
because these are typically studied in more detail at the graduate level.

To use the software that accompanies this book, you will need access to the
world wide web. The source files can be accessed at
http://www.rowan.edu/~bergmann/books/java/decaf.

These are plain text files which can be saved from your internet browser.
Additional description of these files can be found in Appendix B.

I wish to acknowledge the people who participated in the design of this book.
The reviewers of the original Pascal version. James E. Miller of Transylvania
University, Jeffrey C. Chang of Garner-Webb University, Stephen J. Allan of
Utah State University, Karsten Henckell of the New College of USF, and Keith
Olson of Montana Technical College all took the time to read through various
versions of the manuscript of the original edition and provided many helpful
suggestions. My students in the Compiler Design course here at Rowan Univer-
sity also played an important role in testing the original version and subsequent
versions of this book. Support in the form of time and equipment was provided
by the administration of Rowan University.

The pages of this book were composed entirely by the authors and contribu-
tors using LaTeX (with extensions DraTeX and AlDraTeX). Finally, I am most
grateful to my wife Sue for being so understanding during the time that I spent
working on this project.

Secondary Authors

This book is the result of an attempt to launch a series of open source textbooks.
Source files are available at
http://cs.rowan.edu/~bergmann/books.

Contributor List

If you have a suggestion or correction, please send email to bergmann@rowan.edu.
If I make a change based on your feedback, I will add you to the contributor
list (unless you ask to be omitted).

http://www.rowan.edu/~bergmann/books/java/decaf
http://cs.rowan.edu/~bergmann/books
mailto:bergmann@rowan.edu
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Chapter 1

Introduction

Recently the phrase user interface has received much attention in the computer
industry. A user interface is the mechanism through which the user of a device
communicates with the device. Since digital computers are programmed using
a complex system of binary codes and memory addresses, we have developed
sophisticated user interfaces, called programming languages, which enable us to
specify computations in ways that seem more natural. This book will describe
the implementation of this kind of interface, the rationale being that even if
you never need to design or implement a programming language, the lessons
learned here will still be valuable to you. You will be a better programmer as a
result of understanding how programming languages are implemented, and you
will have a greater appreciation for programming languages. In addition, the
techniques which are presented here can be used in the construction of other
user interfaces, such as the query language for a database management system.

1.1 What is a Compiler?

Recall from your study of assembly language or computer organization the kinds
of instructions that the computer’s CPU is capable of executing. In general,
they are very simple, primitive operations. For example, there are often in-
structions which do the following kinds of operations: (1) add two numbers
stored in memory, (2) move numbers from one location in memory to another,
(3) move information between the CPU and memory. But there is certainly
no single instruction capable of computing an arbitrary expression such as
√

(x− x0)2 + (x− x1)2, and there is no way to do the following with a sin-
gle instruction:

if (array6[loc]<MAX) sum = 0; else array6[loc] = 0;

These capabilities are implemented with a software translator, known as a
compiler. The function of the compiler is to accept statements such as those
above and translate them into sequences of machine language operations which,

1



2 CHAPTER 1. INTRODUCTION

if loaded into memory and executed, would carry out the intended computation.
It is important to bear in mind that when processing a statement such as x = x
* 9; the compiler does not perform the multiplication. The compiler generates,
as output, a sequence of instructions, including a ”multiply” instruction.

Languages which permit complex operations, such as the ones above, are
called high-level languages, or programming languages. A compiler accepts as
input a program written in a particular high-level language and produces as
output an equivalent program in machine language for a particular machine
called the target machine. We say that two programs are equivalent if they
always produce the same output when given the same input. The input program
is known as the source program, and its language is the source language. The
output program is known as the object program, and its language is the object
language. A compiler translates source language programs into equivalent object
language programs. Some examples of compilers are:

A Java compiler for the Apple Macintosh

A COBOL compiler for the SUN

A C++ compiler for the Apple Macintosh

If a portion of the input to a Java compiler looked like this:

a = b+ c ∗ d;

the output corresponding to this input might look something like this:

LOD r1,c // Load the value of c into reg 1
MUL r1,d // Multiply the value of d by reg 1
STO r1,temp1 // Store the result in temp1
LOD r1,b // Load the value of b into reg 1
ADD r1,temp1 // Add value of temp1 to register 1
STO r1,temp2 // Store the result in temp2
MOV a,temp2 // Move temp2 to a, the final result

The compiler must be smart enough to know that the multiplication should
be done before the addition even though the addition is read first when scanning
the input. The compiler must also be smart enough to know whether the input
is a correctly formed program (this is called checking for proper syntax), and to
issue helpful error messages if there are syntax errors.

Note the somewhat convoluted logic after the Test instruction in Sample
Problem 1.1.1 . Why did it not simply branch to L3 if the condition code indi-
cated that the first operand (X) was greater than or equal to the second operand
(temp1), thus eliminating an unnecessary branch instruction and label? Some
compilers might actually do this, but the point is that even if the architecture of
the target machine permits it, many compilers will not generate optimal code.
In designing a compiler, the primary concern is that the object program be
semantically equivalent to the source program (i.e. that they mean the same
thing, or produce the same output for a given input). Object program efficiency
is important, but not as important as correct code generation.
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Sample Problem 1.1.1

Show the output of a Java native code compiler, in any typical
assembly language, for the following Java input string:

while (x<a+b) x = 2*x;

Solution:

L1: LOD r1,a // Load a into reg. 1
ADD r1,b // Add b to reg. 1
STO r1,temp1 // temp1 = a + b
CMP x,temp1 // Test for while condition
BL L2 // Continue with loop if x < Temp1
B L3 // Terminate loop

L2: LOD r1,=’2’
MUL r1,x
STO r1,x // x = 2 * x
B L1 // Repeat loop

L3:

What are the advantages of a high-level language over machine or assembly
language? (1) Machine language (and even assembly language) is difficult to
work with and difficult to maintain. (2) With a high-level language you have
a much greater degree of machine independence and portability from one kind
of computer to another (as long as the other machine has a compiler for that
language). (3) You do not have to retrain application programmers every time
a new machine (with a new instruction set) is introduced. (4) High-level lan-
guages may support data abstraction (through data structures) and program
abstraction (procedures and functions).

What are the disadvantages of high-level languages? (1) The programmer
does not have complete control of the machine’s resources (registers, interrupts,
I/O buffers). (2) The compiler may generate inefficient machine language pro-
grams. (3) Additional software, the compiler, is needed in order to use a high-
level language. As compiler development and hardware have improved over the
years, these disadvantages have become less problematic. Consequently, most
programming today is done with high-level languages.

An interpreter is software which serves a purpose very similar to that of
a compiler. The input to an interpreter is a program written in a high-level
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Input

a = 3;
b = 4;
println (a*b);

Compiler✲ ✲

Output

Mov a,=’3’
Mov b,=’4’
Lod r1,a
Push Tmp
Mul r1,b
Sto r1,Tmp
Call Write

Input

a = 3;
b = 4;

println (a*b);

Interpreter✲ ✲

Output

12

Figure 1.1: A Compiler and Interpreter produce very different output for the
same input

language, but rather than generating a machine language program, the inter-
preter actually carries out the computations specified in the source program.
In other words, the output of a compiler is a program, whereas the output of
an interpreter is the source program’s output. Figure 1.1 shows that although
the input may be identical, compilers and interpreters produce very different
output. Nevertheless, many of the techniques used in designing compilers are
also applicable to interpreters.

Sample Problem 1.1.2

Show the compiler output and the interpreter output for the fol-
lowing Java source code:

for (i=1; i<=4; i++) System.out.println (i*3);

Solution:

Compiler Output

LOD r1,=’4’
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STO r1,Temp1
MOV i,=’1’

L1: CMP i,temp1
BH L2 // Terminate loop if i>Temp1
LOD r1,i
MUL r1,=’3’
STO r1,Temp2
PUSH Temp2 // Parameter for println
CALL Print // Print the result
B L1 // Repeat loop

L2:

Interpreter Output

3 6 9 12

Students are often confused about the difference between a compiler and an
interpreter. Many commercial compilers come packaged with a built-in edit-
compile-run front end. In effect, the student is not aware that after compilation
is finished, the object program must be loaded into memory and executed,
because this all happens automatically. As larger programs are needed to solve
more complex problems, programs are divided into manageable source modules,
each of which is compiled separately to an object module. The object modules
can then be linked to form a single, complete, machine language program. In
this mode, it is more clear that there is a distinction between compile time, the
time at which a source program is compiled, and run time, the time at which
the resulting object program is loaded and executed. Syntax errors are reported
by the compiler at compile time and are shown at the left, below, as compile-
time errors. Other kinds of errors not generally detected by the compiler are
called run-time errors and are shown at the right below:

Compile-Time Errors Run-Time Errors
a = ((b+c)*d; x = a-a;

y = 100/x; // division by 0

if x<b fn1(); Integer n[ ] = new Integer[7];
else fn2(); n[8] = 16; // invalid subscript
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C
Java → Mac

Mac
C

Java → Mac

Sun
C

PC → Java

Ada

Figure 1.2: Big C notation for compilers. (a) A Java compiler for the Mac.
(b) A compiler which translates Java programs to Mac machine language, and
which runs on a Sun machine. (c) A compiler which translates PC machine
language programs to Java, writen in Ada

It is important to remember that a compiler is a program, and it must be
written in some language (machine, assembly, high-level). In describing this
program, we are dealing with three languages: (1) the source language, i.e. the
input to the compiler, (2) the object language, i.e. the output of the compiler,
and (3) the language in which the compiler is written, or the language in which
it exists, since it might have been translated into a language foreign to the
one in which it was originally written. For example, it is possible to have
a compiler that translates Java programs into Macintosh machine language.
That compiler could have been written in the C language, and translated into
Macintosh (or some other) machine language. Note that if the language in which
the compiler is written is a machine language, it need not be the same as the
object language. For example, a compiler that produces Macintosh machine
language could run on a Sun computer. Also, the object language need not
be a machine or assembly language, but could be a high-level language. A
concise notation describing compilers is given by Aho et. al. [1] and is shown
in Figure 1.2. In these diagrams, the large C stands for Compiler (not the C
programming language), the superscript describes the intended translation of
the compiler, and the subscript shows the language in which the compiler exists
Figure 1.2 (a) shows a Java compiler for the Macintosh. Figure 1.2 (b) shows
a compiler which translates Java programs into equivalent Macintosh machine
language, but it exists in Sun machine language, and consequently it will run
only on a Sun. Figure 1.2 (c) shows a compiler which translates PC machine
language programs into equivalent Java programs. It is written in Ada and will
not run in that form on any machine.

In this notation the name of a machine represents the machine language for
that machine; i.e. Sun represents Sun machine language, and PC represents PC
machine language (i.e. Intel Pentium).

Sample Problem 1.1.3

Using the big C notation of Figure 1.2, show each of the following
compilers:

1. An Ada compiler which runs on the PC and compiles to the PC
machine language.
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2. An Ada compiler which compiles to the PC machine language,
but which is written in Ada.

3. An Ada compiler which compiles to th PC machine language,
but which runs on a Sun.

Solution:

(1) (2) (3)

C
Ada → PC

PC
C

Ada → PC

Ada
C

Ada → PC

Sun

1.1.1 Exercises

1. Show assembly language for a machine of your choice, corresponding to
each of the following Java statements:

(a) a = b + c;

(b) a = (b+c) * (c-d);

(c) for (i=1; i<=10; i++) a = a+i;

2. Show the difference between compiler output and interpreter output for
each of the following source inputs:

(a) a = 12; (b) a = 12;

b = 6; b = 6;

c = a+b; if (a<b) println (a);

println (c+a+b); else println (b);

(c) a = 12;

b = 6;

while (b<a)

{ a = a-1;

println (a+b);

}
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3. Which of the following Java source errors would be detected at compile
time, and which would be detected at run time?

(a) a = b+c = 3;

(b) if (x<3) a = 2

else a = x;

(c) if (a>0) x = 20;

else if (a<0) x = 10;

else x = x/a;

(d) MyClass x [] = new MyClass[100];

x[100] = new MyClass();

4. Using the big C notation, show the symbol for each of the following:

(a) A compiler which translates COBOL source programs to PC machine
language and runs on a PC.
(b) A compiler, written in Java, which translates FORTRAN source pro-
grams to Mac machine language.
(c) A compiler, written in Java, which translates Sun machine language
programs to Java.

1.2 The Phases of a Compiler

The student is reminded that the input to a compiler is simply a string of char-
acters. Students often assume that a particular interpretation is automatically
understood by the computer (sum = sum + 1; is obviously an assignment state-
ment, but the computer must be programmed to determine that this is the case).
In order to simplify the compiler design and construction process, the compiler
is implemented in phases. In general, a compiler consists of at least three phases:
(1) lexical analysis, (2) syntax analysis, and (3) code generation. In addition,
there could be other optimization phases employed to produce efficient object
programs.

1.2.1 Lexical Analysis (Scanner) - Finding theWord Bound-
aries

The first phase of a compiler is called lexical analysis (and is also known as a
lexical scanner). As implied by its name, lexical analysis attempts to isolate
the words in an input string. We use the word word in a technical sense. A
word, also known as a lexeme, a lexical item, or a lexical token, is a string of
input characters which is taken as a unit and passed on to the next phase of
compilation. Examples of words are:
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• key words - while, void, if, for, ...

• identifiers - declared by the programmer

• operators - +, -, *, /, =, ==, ...

• numeric constants - numbers such as 124, 12.35, 0.09E-23, etc.

• character constants - single characters or strings of characters enclosed in
quotes

• special characters - characters used as delimiters such as . ( ) , ; :

• comments - ignored by subsequent phases. These must be identified by
the scanner, but are not included in the output.

The output of the lexical phase is a stream of tokens corresponding to the
words described above. In addition, this phase builds tables which are used by
subsequent phases of the compiler. One such table, called the symbol table,
stores all identifiers used in the source program, including relevant informa-
tion and attributes of the identifiers. In block-structured languages it may be
preferable to construct the symbol table during the syntax analysis phase be-
cause program blocks (and identifier scopes) may be nested. Alternatively, an
additional phase called the semantic phase may be used for this purpose.

Sample Problem 1.2.1

Show the token classes, or “words”, put out by the lexical analysis
phase corresponding to this Java source input:

sum = sum + unit * /* accumulate sum */ 1.2e-12 ;

Solution:

identifier (sum)
assignment (=)
identifier (sum)
operator (+)
identifier (unit)
operator (*)
numeric constant (1.2e-12)
semicolon (;)
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1.2.2 Syntax Analysis Phase

The syntax analysis phase is often called the parser. This term is critical to
understanding both this phase and the study of languages in general. The parser
will check for proper syntax, issue appropriate error messages, and determine
the underlying structure of the source program. The output of this phase may
be a stream of atoms or a collection of syntax trees. An atom is an atomic
operation, or one that is generally available with one (or just a few) machine
language instruction(s) on most target machines. For example, MULT, ADD,
and MOVE could represent atomic operations for multiplication, addition, and
moving data in memory. Each operation could have 0 or more operands also
listed in the atom: (operation, operand1, operand2, operand3). The meaning
of the following atom would be to add A and B, and store the result into C:

(ADD,A,B,C)
In Sample Problem 1.2.2, below, each atom consists of three or four parts: an

operation, one or two operands, and a result. Note that the compiler must put
out the MULT atom before the ADD atom, despite the fact that the addition
is encountered first in the source statement.

Sample Problem 1.2.2

Show the atoms corresponding to the following Java statement:
a = b + c * d ;

Solution:

(MULT, c, d, temp1)

(ADD, b, temp1, temp2)

(MOVE, temp2, a)

To implement transfer of control, we could use label atoms, which serve only
to mark a spot in the object program to which we might wish to branch in
implementing a control structure such as if or while. A label atom with the
name L1 would be (LBL,L1). We could use a jump atom for an unconditional
branch, and a test atom for a conditional branch: The atom (JMP, L1) would
be an unconditional branch to the label L1. The atom (TEST, a, ¡=, b, L2)
would be a conditional branch to the label L2, if a¡=b is true.
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a

b

c d

*

+

=

Figure 1.3: A Syntax Tree for a = b + c * d

Sample Problem 1.2.3

Show the atoms corresponding to the following Java statement:
while (a <= b) a = a + 1;

Solution:

(LBL, L1)

(Test, a, <=, b, L2)

(JMP, L3)

(LBL, L2)

(ADD, a, 1, a)

(JMP, L1)

(LBL, L3)

Some parsers put out syntax trees as an intermediate data structure, rather
than atom strings. A syntax tree indicates the structure of the source statement,
and object code can be generated directly from the syntax tree. A syntax tree
for the expression a = b+ c ∗ d is shown in Figure 1.3.

In syntax trees, each interior node represents an operation or control struc-
ture and each leaf node represents an operand. A statement such as if (Expr)
Stmt1 else Stmt2 could be implemented as a node having three children: one for
the conditional expression, one for the true part (Stmt1), and one for the else
statement (Stmt2). The while control structure would have two children: one
for the loop condition, and one for the statement to be repeated. The compound
statement could be treated a few different ways. The compound statement could
have an unlimited number of children, one for each statement in the compound
statement. The other way would be to treat the semicolon like a statement
concatenation operator, yielding a binary tree.
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Once a syntax tree has been created, it is not difficult to generate code from
the syntax tree; a postfix traversal of the tree is all that is needed. In a postfix
traversal, for each node, N, the algorithm visits all the subtrees of N, and visits
the node N last, at which point the instruction(s) corresponding to node N can
be generated.

Sample Problem 1.2.4

Show a syntax tree for the Java statement:
if (a+3 < 400) a =0; else b = a*a;

Assume that an if statement consists of three subtrees, one for the
condition, one for the consequent statement, and one for the else

statement, if necessary.

Solution:

a 3

+ 400

<

a 0

=

b

a a

*

=

if

Many compilers also include a phase for semantic analysis. In this phase
the data types are checked, and type conversions are performed when necessary.
The compiler may also be able to detect some semantic errors, such as division
by zero, or the use of a null pointer.

1.2.3 Global Optimization

The global optimization phase is optional. Its purpose is simply to make the
object program more efficient in space and/or time. It involves examining the
sequence of atoms put out by the parser to find redundant or unnecessary in-
structions or inefficient code. Since it is invoked before the code generator, this
phase is often called machine-independent optimization. For example, in the
following program segment:
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stmt1

go to label1

stmt2

stmt3

label2: stmt4

stmt2 and stmt3 can never be executed. They are unreachable and can be
eliminated from the object program. A second example of global optimization
is shown below:

for (i=1; i<=100000; i++)

{ x = Math.sqrt (y); // square root method

System.out.println (x+i);

}

In this case, the assignment to x need not be inside the loop since y does not
change as the loop repeats (it is a loop invariant ). In the global optimization
phase, the compiler would move the assignment to x out of the loop in the object
program:

x = Math.sqrt (y); // loop invariant

for (i=1; i<=100000; i++)

System.out.println (x+i);

This would eliminate 99,999 unnecessary calls to the sqrt method at run
time.

The reader is cautioned that global optimization can have a serious impact
on run-time debugging. For example, if the value of y in the above example
was negative, causing a run-time error in the sqrt function, the user would
be unaware of the actual location of that portion of code which called the
sqrt function, because the compiler would have moved the offending statement
(usually without informing the programmer). Most compilers that perform
global optimization also have a switch with which the user can turn optimization
on or off. When debugging the program, the switch would be off. When the
program is correct, the switch would be turned on to generate an optimized
version for the user. One of the most difficult problems for the compiler writer
is making sure that the compiler generates optimized and unoptimized object
modules, from the same source module, which are equivalent.

1.2.4 Code Generation

Most Java compilers produce an intermediate form, known as byte code, which
can be interpreted by the Java run-time environment. In this book we will be
assuming that our compiler is to produce native code for a particular machine.

It is assumed that the student has had some experience with assembly lan-
guage and machine language, and is aware that the computer is capable of exe-
cuting only a limited number of primitive operations on operands with numeric
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memory addresses, all encoded as binary values. In the code generation phase,
atoms or syntax trees are translated to machine language (binary) instructions,
or to assembly language, in which case the assembler is invoked to produce
the object program. Symbolic addresses (statement labels) are translated to
relocatable memory addresses at this time.

For target machines with several CPU registers, the code generator is re-
sponsible for register allocation. This means that the compiler must be aware
of which registers are being used for particular purposes in the generated pro-
gram, and which become available as code is generated.

For example, an ADD atom might be translated to three machine language
instructions: (1) load the first operand into a register, (2) add the second
operand to that register, and (3) store the result, as shown for the atom (ADD,
a, b,temp):

LOD r1,a // Load a into reg. 1

ADD r1,b // Add b to reg. 1

STO r1,temp // Store reg. 1 in temp

In Sample Problem 1.2.5 the destination for the MOV instruction is the
first operand, and the source is the second operand, which is the reverse of the
operand positions in the MOVE atom.

Sample Problem 1.2.5

Show assembly language instructions corresponding to the follow-
ing atom string:

(ADD, a, b, temp1)

(TEST, a, ==, b, L1)

(MOVE, temp1, a)

(LBL, L1)

(MOVE, temp1, b)

Solution:

LOD r1,a
ADD r1,b
STO r1,temp1 // ADD, a, b, temp1
CMP a,b
BE L1 // TEST, A, ==, B, L1
MOV a,temp1 // MOVE, temp1, a

L1: MOV b,temp1 // MOVE, temp1, b
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It is not uncommon for the object language to be another high-level language.
This is done in order to improve portablility of the language being implemented.

1.2.5 Local Optimization

The local optimization phase is also optional and is needed only to make the
object program more efficient. It involves examining sequences of instructions
put out by the code generator to find unnecessary or redundant instructions. For
this reason, local optimization is often called machine-dependent optimization.
An example of a local optimization would be a load/store optimization. An
addition operation in the source program might result in three instructions in
the object program: (1) Load one operand into a register, (2) add the other
operand to the register, and (3) store the result. Consequently, the expression
a + b + c in the source program might result in the following instructions as
code generator output:

LOD r1,a // Load a into register 1

ADD r1,b // Add b to register 1

STO r1,temp1 // Store the result in temp1*

LOD r1,temp1 // Load result into reg 1*

ADD r1,c // Add c to register 1

STO r1,temp2 // Store the result in temp2

Note that some of these instructions (those marked with * in the comment) can
be eliminated without changing the effect of the program, making the object
program both smaller and faster:

LOD r1,a // Load a into register 1

ADD r1,b // Add b to register 1

ADD r1,c // Add c to register 1

STO r1,temp // Store the result in temp

A diagram showing the phases of compilation and the output of each phase is
shown in Figure 1.4. Note that the optimization phases may be omitted (i.e. the
atoms may be passed directly from the Syntax phase to the Code Generator,
and the instructions may be passed directly from the Code Generator to the
compiler output file.)

A word needs to be said about the flow of control between phases. One way
to handle this is for each phase to run from start to finish separately, writing
output to a disk file. For example, lexical analysis is started and creates a file
of tokens. Then, after the entire source program has been scanned, the syntax
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Source Program

Lexical
Analysis

Tokens

Syntax
Analysis

Atoms

Global
Optimization

Atoms

Code
Generation

Instructions

Local
Optimization

❄

❄

❄

❄

❄

❄

✛

✛

Instructions
Figure 1.4: The Phases of a Compiler
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analysis phase is started, reads the entire file of tokens, and creates a file of
atoms. The other phases continue in this manner; this would be a multiple pass
compiler since the input is scanned several times.

Another way for flow of control to proceed would be to start up the syntax
analysis phase first. Each time it needs a token it calls the lexical analysis phase
as a subroutine, which reads enough source characters to produce one token,
and returns it to the parser. Whenever the parser has scanned enough source
code to produce an atom, the atom is converted to object code by calling the
code generator as a subroutine; this would be a single pass compiler.

1.2.6 Exercises

1. Show the lexical tokens corresponding to each of the following Java source
inputs:

(a) for (i=1; i<5.1e3; i++) func1(x);

(b) if (sum!=133) /* sum = 133 */

(c) while ( 1.3e-2 if &&

(d) if 1.2.3 < 6

2. Show the sequence of atoms put out by the parser, and show the syntax
tree corresponding to each of the following Java source inputs:

(a) a = (b+c) * d;

(b) if (a<b) a = a + 1;

(c) while (x>1)

{ x = x/2;

i = i+1;

}

(d) a = b - c - d/a + d * a;

3. Show an example of a Java statement which indicates that the order in
which the two operands of an ADD are evaluated can cause different re-
sults:

operand1 + operand2

4. Show how each of the following Java source inputs can be optimized using
global optimization techniques:

(a) for (i=1; i<=10; i++)

{ x = i + x;

a[i] = a[i-1];

y = b * 4;
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}

(b) for (i=1; i<=10; i++)

{ x = i;

y = x/2;

a[i] = x;

}

(c) if (x>0) {x = 2; y = 3;}

else {y = 4; x = 2;}

(d) if (x>0) x = 2;

else if (x<=0) x = 3;

else x = 4;

5. Show, in assembly language for a machine of your choice, the output of
the code generator for the following atom string:

(ADD,a,b,temp1)

(SUB,c,d,temp2)

(TEST,temp1,<,temp2,L1)

(JUMP,L2)

(LBL,L1)

(MOVE,a,b)

(JUMP,L3)

(LBL,L2)

(MOVE,b,a)

(LBL,L3)

6. Show a Java source statement which might have produced the atom string
in Problem 5, above.

7. Show how each of the following object code segments could be optimized
using local optimization techniques:

(a) LD r1,a

MULT r1,b

ST r1,temp1

LD r1,temp1

ADD r1,C

ST r1,temp2

(b) LD r1,a

ADD r1,b

ST r1,temp1
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Program loaded
in Computer’s

RAM

Name of
Computer

✲ ✲Input Output

Figure 1.5: Notation for a program running on a computer

MOV c,temp1

(c) CMP a,b

BH L1

B L2

L1: MOV a,b

B L3

L2: MOV b,a

L3:

1.3 Implementation Techniques

By this point it should be clear that a compiler is not a trivial program. A new
compiler, with all optimizations, could take over a person-year to implement.
For this reason, we are always looking for techniques or shortcuts which will
speed up the development process. This often involves making use of compilers,
or portions of compilers, which have been developed previously. It also may
involve special compiler generating tools, such as lex and yacc , which are part
of the Unix environment, or newer tools such as JavaCC or SableCC.

In order to describe these implementation techniques graphically, we use
the method shown in Figure 1.5, in which the computer is designated with a
rectangle, and its name is in a smaller rectangle sitting on top of the computer.
In all of our examples the program loaded into the computer’s memory will be
a compiler. It is important to remember that a computer is capable of running
only programs written in the machine language of that computer. The input
and output (also compilers in our examples) to the program in the computer
are shown to the left and right, respectively.

Since a compiler does not change the purpose of the source program, the
superscript on the output is the same as the superscript on the input (X → Y ),
as shown in Figure 1.6. The subscript language (the language in which it exists)
of the executing compiler (the one inside the computer), M, must be the machine
language of the computer on which it is running. The subscript language of the
input, S, must be the same as the source language of the executing compiler. The
subscript language of the output, O, must be the same as the object language
of the executing compiler.
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C
S → O

M

M

✲ ✲C
X → Y

S
C

X → Y

O

Figure 1.6: Notation for a compiler being translated to a different language

In the following sections it is important to remember that a compiler does
not change the purpose of the source program; a compiler translates the source
program into an equivalent program in another language (the object program).
The source program could, itself, be a compiler. If the source program is a
compiler which translates language A into language B, then the object program
will also be a compiler which translates language A into language B.

Sample Problem 1.3.1

Show the output of the following compilation using the big C
notation.

C
Ada → Sun

Sun

Sun

✲ ✲C
Ada → PC

Ada
?

Solution:

C
Ada → PC

Sun

1.3.1 Bootstrapping

The term bootstrapping is derived from the phrase ”pull yourself up by your
bootstraps” and generally involves the use of a program as input to itself (the
student may be familiar with bootstrapping loaders which are used to initialize
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We want this compiler:

C
Java → Sun

Sun

We write these two small compilers:

C
Java → Sun

Sun
C

Sub → Sun

Sun

C
Sub → Sun

Sun

Sun

✲ ✲C
Java → Sun

Sub
C

Java → Sun

Sun

Figure 1.7: Bootstrapping Java onto a Sun computer

a computer just after it has been switched on, hence the expression ”to boot”
a computer).

In this case, we are talking about bootstrapping a compiler, as shown in
Figure 1.7. We wish to implement a Java compiler for the Sun computer. Rather
than writing the whole thing in machine (or assembly) language, we instead
choose to write two easier programs. The first is a compiler for a subset of Java,
written in machine (assembly) language. The second is a compiler for the full
Java language written in the Java subset language. In Figure 1.7 the subset
language of Java is designated ’Sub’, and it is simply Java, without several of
the superfluous features, such as enumerated types, unions, switch statements,
etc. The first compiler is loaded into the computer’s memory and the second is
used as input. The output is the compiler we want i.e. a compiler for the full
Java language, which runs on a Sun and produces object code in Sun machine
language.

In actual practice this is an iterative process, beginning with a small subset
of Java, and producing, as output, a slightly larger subset. This is repeated,
using larger and larger subsets, until we eventually have a compiler for the
complete Java language.

1.3.2 Cross Compiling

New computers with enhanced (and sometimes reduced) instruction sets are
constantly being produced in the computer industry. The developers face the
problem of producing a new compiler for each existing programming language
each time a new computer is designed. This problem is simplified by a process
called cross compiling.

Cross compiling is a two-step process and is shown in Figure 1.8. Suppose
that we have a Java compiler for the Sun, and we develop a new machine called
a Mac. We now wish to produce a Java compiler for the Mac without writing
it entirely in machine (assembly) language; instead, we write the compiler in
Java. Step one is to use this compiler as input to the Java compiler on the Sun.
The output is a compiler that translates Java into Mac machine language, and
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We want this compiler:

C
Java → Mac

Mac

We write this compilers:

C
Java → Mac

Java

We already have
this compiler:

C
Java → Sun

Sun

Step 1

C
Java → Sun

Sun

Sun

✲ ✲C
Java → Mac

Java
C

Java → Mac

Sun

Step 2

C
Java → Mac

Sun

Sun

✲ ✲C
Java → Mac

Java
C

Java → Mac

Mac

Figure 1.8: Cross compiling Java from a Sun to a Mac computer

which runs on a Sun. Step two is to load this compiler into the Sun and use
the compiler we wrote in Java as input once again. This time the output is a
Java compiler for the Mac which runs on the Mac, i.e. the compiler we wanted
to produce.

Note that this entire process can be completed before a single Mac has been
built. All we need to know is the architecture (the instruction set, instruction
formats, addressing modes, ...) of the Mac.

1.3.3 Compiling To Intermediate Form

As we mentioned in our discussion of interpreters above, it is possible to compile
to an intermediate form, which is a language somewhere between the source
high-level language and machine language. The stream of atoms put out by the
parser is a possible example of an intermediate form. The primary advantage of
this method is that one needs only one translator for each high-level language
to the intermediate form (each of these is called a front end) and only one
translator (or interpreter) for the intermediate form on each computer (each
of these is called a back end). As depicted in Figure 1.9, for three high-level
languages and two computers we would need three translators to intermediate
form and two code generators (or interpreters), one for each computer. Had we
not used the intermediate form, we would have needed a total of six different
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PC
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Java

C++

Ada

Java

C++

Ada

✫✪
✬✩

✲

✘✘✘✘✘✘✘✘✘✘✿

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✸

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗s

❍❍❍❍❍❍❍❍❍❍❥✲

❅
❅
❅
❅❘
✲

�
�
�
�✒

�
�
��✒

❅
❅
❅❅❘

(a)

(b)

Figure 1.9: (a) Six compilers neede for three languages on two machines. (b)
Fewer than three compilers using intermediate form needed for the same lan-
guages and machines.

compilers. In general, given n high-level languages and m computers, we would
need n x m compilers. Assuming that each front end and each back end is half
of a compiler, we would need (n+m)/2 compilers using intermediate form.

A very popular intermediate form for the PDP-8 and Apple II series of
computers, among others, called p-code, was developed several years ago at the
University of California at San Diego. Today, high-level languages such as C are
commonly used as an intermediate form. The Java Virtual Machine (i.e. Java
byte code) is another intermediate form which has been used extensively on the
Internet.
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1.3.4 Compiler-Compilers

Much of compiler design is understood so well at this time that the process can
be automated. It is possible for the compiler writer to write specifications of the
source language and of the target machine so that the compiler can be generated
automatically. This is done by a compiler-compiler. We will introduce this topic
in Chapters 2 and 5 when we study the SableCC public domain software.

1.3.5 Exercises

1. Fill in the missing information in the compilations indicated below:

(a)

C Java → PC

PC

PC

✲ ✲C
Java → Mac

Java
?

(b)

C
Java → Mac

PC

PC

✲ ✲C
Java → Mac

Java
?

(c)

C
Ada → Sun

Sun

Sun

✲ ✲? C
Ada → Sun

Sun

(d)
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?

Mac

✲ ✲C
Mac → Java

Java
C

Mac → Java

Sun

2. How could the compiler generated in part (d) of the previous question be
used?

3. If the only computer you have is a PC (for which you already have a
FORTRAN compiler), show how you can produce a FORTRAN compiler
for the Mac computer, without writing any assembly or machine language.

4. Show how Ada can be bootstrapped in two steps on a Sun. First use a
small subset of Ada, Sub1 to build a compiler for a larger subset, Sub2
(by bootstrapping). Then use Sub2 to implement Ada (again by boot-
strapping). Sub1 is a subset of Sub2.

5. You have 3 computers: A PC, a Mac, and a Sun. Show how to generate
automatically a java to FORT translator which will run on a Sun if you
also have the four compilers shown below:

C
Java → FORT

Mac
C

FORT → Java

Sun
C

Java → Sun

Mac
C

Java → FORT

Java

6. In Figure 1.8, suppose we also haveC
Java → Sun

Java
. When we write

C
Java → Mac

Java
, which of the phases ofC

Java → Sun

Java
can be reused

as is?

7. Using the big C notation, show the 11 translators which are represented
in Figure 1.9. Use Int to represent the intermediate form.

1.4 Case Study: Decaf

As we study the various phases of compilation and techniques used to imple-
ment those phases, we will show how the concepts can be applied to an actual
compiler. For this purpose we will define a language called Decaf as a relatively
simple subset of the Java language. The implementation of Decaf will then be
used as a case study, or extended project, throughout the textbook. The last
section of each chapter will show how some of the concepts of that chapter can
be used in the design of an actual compiler for Decaf.

Decaf is a ”bare bones” version of Java. Its only data types are int and
float, and it does not permit arrays, classes, enumerated types, methods, or
subprograms. However, it does include while, for, and if control structures, and
it is possible to write some useful programs in Decaf. The example that we will
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use for the case study is the following Decaf program, to compute the cosine
function:

class Cosine

{ public static void main (String [] args)

{ float cos, x, n, term, eps, alt;

/* compute the cosine of x to within tolerance eps */

/* use an alternating series */

x = 3.14159;

eps = 0.0001;

n = 1;

cos = 1;

term = 1;

alt = -1;

while (term>eps

{ term = term * x * x / n / (n+1);

cos = cos + alt * term;

alt = -alt;

n = n + 2;

}

}

}

This program computes the cosine of the value x (in radians) using an al-
ternating series which terminates when a term becomes smaller than a given
tolerance (eps). This series is described in most calculus textbooks and can be
written as:

cos(x) = 1− x2/2 + x4/24− x6/720 + ...
Note that in the statement term = term∗x∗x/n/(n+1) the multiplication

and division operations associate to the left, so that n and (n+ 1) are both in
the denominator.

A precise specification of Decaf, similar to a BNF description, is given in
Appendix A. The lexical specifications (free format, white space taken as de-
limiters, numeric constants, comments, etc.) of Decaf are the same as standard
C.

When we discuss the back end of the compiler (code generation and opti-
mization) we will need to be concerned with a target machine for which the
compiler generates instructions. Rather than using an actual computer as the
target machine, we have designed a fictitious computer called Mini as the target
machine. This was done for two reasons: (1) We can simplify the architecture of
the machine so that the compiler is not unnecessarily complicated by complex
addressing modes, complex instruction formats, operating system constraints,
etc., and (2) we provide the source code for a simulator for Mini so that the
student can compile and execute Mini programs (as long as he/she has a C
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compiler on his/her computer). The student will be able to follow all the steps
in the compilation of the above cosine program, understand its implementation
in Mini machine language, and observe its execution on the Mini machine.

The complete source code for the Decaf compiler and the Mini simulator
is provided in the appendix and is available through the Internet, as described
in the appendix. With this software, the student will be able to make his/her
own modifications to the Decaf language, the compiler, or the Mini machine
architecture. Some of the exercises in later chapters are designed with this
intent.

1.5 Chapter Summary

This chapter reviewed the concepts of high-level language and machine language
and introduced the purpose of the compiler. The compiler serves as a translator
from any program in a given high-level language (the source program) to an
equivalent program in a given machine language (the object program). We
stressed the fact that the output of a compiler is a program, and contrasted
compilers with interpreters, which carry out the computations specified by the
source program.

We introduced the phases of a compiler: (1) The lexical scanner finds word
boundaries and produces a token corresponding to each word in the source pro-
gram. (2) The syntax phase, or parser, checks for proper syntax and, if correct,
puts out a stream of atoms or syntax trees which are similar to the primitive
operations found in a typical target machine. (3) The global optimization phase
is optional, eliminates unnecessary atoms or syntax tree elements, and improves
efficiency of loops if possible. (4) The code generator converts the atoms or
syntax trees to instructions for the target machine. (5) The local optimiza-
tion phase is also optional, eliminates unnecessary instructions, and uses other
techniques to improve the efficiency of the object program.

We discussed some compiler implementation techniques. The first imple-
mentation technique was bootstrapping, in which a small subset of the source
language is implemented and used to compile a compiler for the full source lan-
guage, written in the source language itself. We also discussed cross compiling,
in which an existing compiler can be used to implement a compiler for a new
computer. We showed how the use of an intermediate form can reduce the
workload of the compiler writer.

Finally, we examined a language called Decaf, a small subset of Java, which
will be used for a case study compiler throughout the textbook.



Chapter 2

Lexical Analysis

In this chapter we study the implementation of lexical analysis for compilers.
As defined in Chapter 1, lexical analysis is the identification of words in the
source program. These words are then passed as tokens to subsequent phases
of the compiler, with each token consisting of a class and value. The lexical
analysis phase can also begin the construction of tables to be used later in
the compilation; a table of identifiers (symbol table) and a table of numeric
constants are two examples of tables which can be constructed in this phase of
compilation.

However, before getting into lexical analysis we need to be sure that the
student understands those concepts of formal language and automata theory
which are critical to the design of the lexical analyser. The student who is
familiar with regular expressions and finite automata may wish to skip or skim
section 2.0 and move on to lexical analysis in section 2.2.1.

2.0 Formal Languages

This section introduces the subject of formal languages, which is critical to the
study of programming languages and compilers. A formal language is one that
can be specified precisely and is amenable for use with computers, whereas a
natural language is one which is normally spoken by people. The syntax of Java
is an example of a formal language, but it is also possible for a formal language
to have no apparent meaning or purpose, as discussed in the following sections.

2.0.1 Language Elements

Before we can define a language, we need to make sure the student understands
some fundamental definitions from discrete mathematics. A set is a collection
of unique objects. In listing the elements of a set, we normally list each element
only once (though it is not incorrect to list an element more than once), and
the elements may be listed in any order. For example, {boy, girl, animal} is a

28
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set of words, but it represents the same set as {girl, boy, animal, girl}. A set
may contain an infinite number of objects. The set which contains no elements
is still a set, and we call it the empty set and designate it either by { } or by φ.

A string is a list of characters from a given alphabet. The elements of a
string need not be unique, and the order in which they are listed is important.
For example, “abc” and “cba” are different strings, as are “abb” and “ab”.
The string which consists of no characters is still a string (of characters from
the given alphabet), and we call it the null string and designate it by ǫ. It is
important to remember that if, for example, we are speaking of strings of zeros
and ones (i.e. strings from the alphabet {0,1}), then ǫ is a string of zeros and
ones.

In this and following chapters, we will be discussing languages. A (formal)
language is a set of strings from a given alphabet. In order to understand this, it
is critical that the student understand the difference between a set and a string
and, in particular, the difference between the empty set and the null string. The
following are examples of languages from the alphabet {0,1}:

1. {0,10,1011}

2. { }

3. {ǫ,0,00,000,0000,00000,... }

4. The set of all strings of zeroes and ones having an even number of ones.

The first two examples are finite sets while the last two examples are infinite.
The first two examples do not contain the null string, while the last two examples
do. The following are four examples of languages from the alphabet of characters
available on a computer keyboard:

1. {0,10,1011}

2. {ǫ}

3. Java syntax

4. Italian syntax

The third example is the syntax of a programming language (in which each
string in the language is a Java program without syntax errors), and the fourth
example is a natural language (in which each string in the language is a gram-
matically correct Italian sentence). The second example is not the empty set.

2.0.2 Finite State Machines

We now encounter a problem in specifying, precisely, the strings in an infinite
(or very large) language. If we describe the language in English, we lack the
precision necessary to make it clear exactly which strings are in the language
and which are not in the language. One solution to this problem is to use a
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A❥ B❥
D❥ C❣❥1

0

1

0

1

0

0,1

✲

Figure 2.1: Example of a finite state machine

mathematical or hypothetical machine called a finite state machine. This is
a machine which we will describe in mathematical terms and whose operation
should be perfectly clear, though we will not actually construct such a machine.
The study of theoretical machines such as the finite state machine is called
automata theory because automaton is just another word for machine. A finite
state machine consists of:

1. A finite set of states, one of which is designated the starting state, and
zero or more of which are designated accepting states. The starting state may
also be an accepting state.

2. A state transition function which has two arguments: a state and an
input symbol (from a given input alphabet). It returns a state as its result.

Here is how the machine works. The input is a string of symbols from the
input alphabet. The machine is initially in the starting state. As each symbol
is read from the input string, the machine proceeds to a new state as indicated
by the transition function, which is a function of the input symbol and the
current state of the machine. When the entire input string has been read, the
machine is either in an accepting state or in a non-accepting state. If it is in
an accepting state, then we say the input string has been accepted. Otherwise
the input string has not been accepted, i.e. it has been rejected. The set of all
input strings which would be accepted by the machine form a language, and in
this way the finite state machine provides a precise specification of a language.

Finite state machines can be represented in many ways, one of which is a
state diagram. An example of a finite state machine is shown in Figure 2.1. Each
state of the machine is represented by a circle, and the transition function is
represented by arcs labeled by input symbols leading from one state to another.
The accepting states are double circles, and the starting state is indicated by
an arc with no state at its source (tail) end.

For example, in Figure 2.1. if the machine is in state B and the input is a
0, the machine enters state C. If the machine is in state B and the input is a
1, the machine stays in state B. State A is the starting state, and state C is
the only accepting state. This machine accepts any string of zeroes and ones
which begins with a one and ends with a zero, because these strings (and only
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A❣❥ B❥0

1

1

0

✲

Figure 2.2: Even parity checker

0 1
A D B
B C B
*C C B
D D D

0 1
*A A B
B B A

(a) (b)

Figure 2.3: Finite state machines in table form for the machines of (a) Figure 2.1
and (b) Figure 2.2

these) will cause the machine to be in an accepting state when the entire input
string has been read. Another finite state machine is shown in Figure 2.2. This
machine accepts any string of zeroes and ones which contains an even number of
ones (which includes the null string). Such a machine is called a parity checker.
For both of these machines, the input alphabet is {0,1}.

Notice that both of these machines are completely specified, and there are
no contradictions in the state transitions. This means that for each state there
is exactly one arc leaving that state labeled by each possible input symbol. For
this reason, these machines are called deterministic. We will be working only
with deterministic finite state machines.

Another representation of the finite state machine is the table, in which we
assign names to the states (A, B, C, ...) and these label the rows of the table.
The columns are labeled by the input symbols. Each entry in the table shows
the next state of the machine for a given input and current state. The machines
of Figure 2.1. and Figure 2.2. are shown in table form in Figure 2.3 Accepting
states are designated with an asterisk, and the starting state is the first one
listed in the table.

With the table representation it is easier to ensure that the machine is com-
pletely specified and deterministic (there should be exactly one entry in every
cell of the table). However, many students find it easier to work with the state
diagram representation when designing or analyzing finite state machines.

Sample Problem 2.0.1

Show a finite state machine, in either state graph or table form,
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for each of the following languages (in each case the input alphabet
is {0,1}):

1. Strings containing an odd number of zeros

2. Strings containing three consecutive ones

3. Strings containing exactly three zeros

4. Strings containing an odd number of zeros and an even number
of ones.

Solution:

Solution for #1

A❥ B❣❥0

0

11

✲

0 1
A B A
*B A B

Solution for #2

A❥ B❥ C❥ D❣❥0

1

0

1 1

0,1

0

✲

0 1
A A B
B A C
C A D
*D D D

Solution for #3
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A❥ B❥ C❥
E❥D
❣❥1

0 0

1

0

1

0

1

0,1

✲

0 1
A B A
B C B
C D C
*D E D
E E E

Solution for #4

A❥
C❥ D❥

B❣❥0

0

1
1

1
1

0

0

✲

0 1
A B C
*B A D
C D A
D C B

2.0.3 Regular Expressions

Another method for specifying languages is regular expressions. These are for-
mulas or expressions consisting of three possible operations on languages: union,
concatenation, and Kleene star.

(1) Union Since a language is a set, this operation is the union operation
as defined in set theory. The union of two sets is that set which contains all
the elements in each of the two sets and nothing else. The union operation on
languages is designated with a ‘+’. For example,

{abc, ab, ba} + {ba, bb} = {abc, ab, ba, bb}
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Note that the union of any language with the empty set is that language:

L + {} = L

(2) Concatenation In order to define concatenation of languages, we must
first define concatenation of strings. This operation will be designated by a
raised dot (whether operating on strings or languages), which may be omit-
ted. This is simply the juxtaposition of two strings forming a new string. For
example,

abc · ba = abcba
Note that any string concatenated with the null string is that string itself:
s · ǫ = s.
In what follows, we will omit the quote marks around strings to avoid clut-

tering the page needlessly. The concatenation of two languages is that language
formed by concatenating each string in one language with each string in the
other language. For example,
{ab, a, c} · {b, ǫ} = {ab · b, ab · ǫ, a · b, a · ǫ, c · b, c · ǫ} = {abb, ab, a, cb, c}
In this example, the string ab need not be listed twice. Note that if L1 and

L2 are two languages, then L1 · L2 is not necessarily equal to L2 · L1. Also, L
·{ǫ} = L, but L ·φ = φ .

(3) Kleene * This operation is a unary operation (designated by a postfix
asterisk) and is often called closure. If L is a language, we define:

L0 = {ǫ}
L1 = L
L2 = L · L
...
Ln = L · Ln−1

L∗ = L0 + L1 + L2 + L3 + L4 + L5 + ...

Note that φ∗ = {ǫ}. Intuitively, Kleene * generates zero or more concatena-
tions of strings from the language to which it is applied.

We will use a shorthand notation in regular expressions: if x is a character
in the input alphabet, then x = {’x’}; i.e., the character x represents the set
consisting of one string of length 1 consisting of the character x. This simplifies
some of the regular expressions we will write:

0 + 1 = {0}+ {1} = {0, 1}
0 + ǫ = {0, ǫ}

A regular expression is an expression involving the above three operations
and languages. Note that Kleene * is unary (postfix) and the other two oper-
ations are binary. Precedence may be specified with parentheses, but if paren-
theses are omitted, concatenation takes precedence over union, and Kleene *
takes precedence over concatenation. If L1 , L2 and L3 are languages, then:

L1 + L2 · L3 = L1 + (L2 · L3)
L1 · L2∗ = L1 · (L2∗)
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An example of a regular expression is: (0+1)* To understand what strings
are in this language, let L = {0,1}. We need to find L*: L0 = {ǫ}
L1 = {0, 1}
L2 = L · L1 = {00, 01, 10, 11}
L3 = L · L2 = {000, 001, 010, 011, 100, 101, 110, 111}
...
L∗ = {ǫ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, ...}
This is the set of all strings of zeros and ones.

Another example: (0+1)∗.0 = 1(0+1)∗0 = {10, 100, 110, 1000, 1010, 1100, 1110, ...}
This is the set of all strings of zeros and ones which begin with a 1 and end with
a 0.

Note that we do not need to be concerned with the order of evaluation
of several concatenations in one regular expression, since it is an associative
operation. The same is true of union:

L · (L · L) = (L · L) · L
L+ (L+ L) = (L + L) + L

A word of explanation on nested Kleene *’s is in order. When a * operation
occurs within another * operation, the two are independent. That is, in gen-
erating a sample string, each * generates 0 or more occurrences independently.
For example, the regular expression (0*1)* could generate the string 0001101.
The outer * repeats three times; the first time the inner * repeats three times,
the second time the inner * repeats zero times, and the third time the inner *
repeats once.

Sample Problem 2.0.2

For each of the following regular expressions, list six strings which
are in its language.

1. (a(b+c)*)*d

2. (a+b)*(c+d)

3. (a*b*)*

Solution:

1. d ad abd acd aad abbcbd

2. c d ac abd babc bad

3. ǫ a b ab ba aa
Note that (a*b*)* = (a+b)*
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Sample Problem 2.0.3

Give a regular expression for each of the languages described in
Sample Problem 2.0.2.

Solution:

1. 1*01*(01*01*)*

2. (0+1)*111(0+1)*

3. 1*01*01*01*

4. (00+11)*(01+10)(1(0(11)*0)*1+0(1(00)*1)*0)*1(0(11)*0)*

+ (00+11)*0

An algorithm for converting a finite state machine to an equiv-
alent regular expression is beyond the scope of this text, but may be
found in Hopcroft & Ullman [1979].

2.0.4 Exercises

1. Suppose L1 represents the set of all strings from the alphabet 0,1 which
contain an even number of ones (even parity). Which of the following
strings belong to L1?

(a) 0101
(b) 110211
(c) 000
(d) 010011
(e) ǫ
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2. Suppose L2 represents the set of all strings from the alphabet a,b,c which
contain an equal number of a’s, b’s, and c’s. Which of the following strings
belong to L2?

(a) bca
(b) accbab
(c) ǫ
(d) aaa
(e) aabbcc

3. Which of the following are examples of languages?

(a) L1 from Problem 1 above.
(b) L2 from Problem 2 above.
(c) Java
(d) The set of all programming languages
(e) Swahili

4. Which of the following strings are in the language specified by this finite
state machine?

❣❞❣ ❞❣a

b
b

a
b

a

✲

(a) abab
(b) bbb
(c) aaab
(d) aaa
(e) ǫ

5. Show a finite state machine with input alphabet 0,1 which accepts any
string having an odd number of 1’s and an odd number of 0’s.

6. Describe, in your own words, the language specified by each of the follow-
ing finite state machines with alphabet a,b.

(a)

a b
A B A
B B C
C B D
*D B A

(b)

a b
A B A
B B C
C B D
*D D D



38 CHAPTER 2. LEXICAL ANALYSIS

(c)

a b
*A A B
*B C B
C C C

(d)

a b
A B A
B A B
*C C B

(e)

a b
A B B
*B B B

7. Which of the following strings belong to the language specified by this
regular expression: (a+bb)*a

(a) ǫ
(b) aaa
(c) ba
(d) bba
(e) abba

8. Write regular expressions to specify each of the languages specified by the
finite state machines given in Problem 6.

9. Construct finite state machines which specify the same language as each
of the following regular expressions. The input alphabet in parts a,b,d is
{a,b,c}. The input alphabet in part c is {a,b}. The input alphabet in part
e is {a,b,c,d}.

(a) (a+b)*c

(b) (aa)*(bb)*c

(c) (a*b*)*

(d) (a+bb+c)a*

(e) ((a+b)(c+d))*

10. Show a string of zeros and ones which is not in the language of the regular
expression (0*1)*.

11. Show a finite state machine which accepts multiples of 3, expressed in
binary (ǫ is excluded from this language).

2.1 Lexical Tokens

The first phase of a compiler is called lexical analysis. Because this phase scans
the input string without backtracking (i.e. by reading each symbol once, and
processing it correctly), it is often called a lexical scanner. As implied by its
name, lexical analysis attempts to isolate the words in an input string. We use
the word word in a technical sense. A word, also known as a lexeme, a lexical
item, or a lexical token, is a string of input characters which is taken as a unit
and passed on to the next phase of compilation. Examples of words are:
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1. while, if, else, for, ... These are words which may have a partic-
ular predefined meaning to the compiler, as opposed to identifiers which
have no particular meaning. Reserved words are keywords which are not
available to the programmer for use as identifiers. In most programming
languages, such as Java and C, all keywords are reserved. PL/1 is an
example of a language which has key words but no reserved words.

2. identifiers - words that the programmer constructs to attach a name to
a construct, usually having some indication as to the purpose or intent
of the construct. Identifiers may be used to identify variables, classes,
constants, functions, etc.

3. operators - symbols used for arithmetic, character, or logical operations,
such as +,-,=,!=, etc. Notice that operators may consist of more than one
character.

4. numeric constants - numbers such as 124, 12.35, 0.09E-23, etc. These
must be converted to a numeric format so that they can be used in arith-
metic operations, because the compiler initially sees all input as a string
of characters. Numeric constants may be stored in a table.

5. character constants - single characters or strings of characters enclosed in
quotes.

6. special characters - characters used as delimiters such as .,(,),,,;. These
are generally single-character words.

7. comments - Though comments must be detected in the lexical analysis
phase, they are not put out as tokens to the next phase of compilation.

8. white space - Spaces and tabs are generally ignored by the compiler, except
to serve as delimiters in most languages, and are not put out as tokens.

9. newline - In languages with free format, newline characters should also
be ignored, otherwise a newline token should be put out by the lexical
scanner.

An example of Java source input, showing the word boundaries and types is
given below:

while ( x33 <= 2.5e+33 - total ) calc ( x33 ) ; //!

1 6 2 3 4 3 2 6 2 6 2 6 6

During lexical analysis, a symbol table is constructed as identifiers are en-
countered. This is a data structure which stores each identifier once, regardless
of the number of times it occurs in the source program. It also stores infor-
mation about the identifier, such as the kind of identifier and where associated
run-time information (such as the value assigned to a variable) is stored. This
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data structure is often organized as a binary search tree, or hash table, for
efficiency in searching.

When compiling block structured languages such as Java, C, or Algol, the
symbol table processing is more involved. Since the same identifier can have
different declarations in different blocks or procedures, both instances of the
identifier must be recorded. This can be done by setting up a separate symbol
table for each block, or by specifying block scopes in a single symbol table. This
would be done during the parse or syntax analysis phase of the compiler; the
scanner could simply store the identifier in a string space array and return a
pointer to its first character.

Numeric constants must be converted to an appropriate internal form. For
example, the constant 3.4e+6 should be thought of as a string of six characters
which needs to be translated to floating point (or fixed point integer) format so
that the computer can perform appropriate arithmetic operations with it. As
we will see, this is not a trivial problem, and most compiler writers make use of
library routines to handle this.

The output of this phase is a stream of tokens, one token for each word
encountered in the input program. Each token consists of two parts: (1) a class
indicating which kind of token and (2) a value indicating which member of the
class. The above example might produce the following stream of tokens:

Token Token

Class Value

1 [code for while]

6 [code for (]

2 [ptr to symbol table entry for x33]

3 [code for <=]

4 [ptr to constant table entry for 2.5e+33]

3 [code for -]

2 [ptr to symbol table entry for total]

6 [code for )]

2 [ptr to symbol table entry for calc]

6 [code for (]

2 [ptr to symbol table entry for x33]

6 [code for )]

6 [code for ;]

Note that the comment is not put out. Also, some token classes might not
have a value part. For example, a left parenthesis might be a token class, with
no need to specify a value.

Some variations on this scheme are certainly possible, allowing greater effi-
ciency. For example, when an identifier is followed by an assignment operator,
a single assignment token could be put out. The value part of the token would
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be a symbol table pointer for the identifier. Thus the input string x =, would be
put out as a single token, rather than two tokens. Also, each keyword could be
a distinct token class, which would increase the number of classes significantly,
but might simplify the syntax analysis phase.

Note that the lexical analysis phase does not check for proper syntax. The
input could be
} while if ( { and the lexical phase would put out five tokens corresponding
to the five words in the input. (Presumably the errors will be detected in the
syntax analysis phase.)

If the source language is not case sensitive, the scanner must accommodate
this feature. For example, the following would all represent the same keyword:
then, tHeN, Then, THEN. A preprocessor could be used to translate all alpha-
betic characters to upper (or lower) case. Java is case sensitive.

2.1.1 Exercises

1. For each of the following Java input strings show the word boundaries and
token classes (for those tokens which are not ignored) selected from the
list in Section 2.1.

(a) for (i=start; i<=fin+3.5e6; i=i*3)

ac=ac+/*incr*/1;

(b) { ax= 33 bx=/*if*/31.4 } // ax + 3;

(c) if/*if*/a)}+whiles

2. Since Java is free format, newline characters are ignored during lexical
analysis (except to serve as white space delimiters and to count lines for di-
agnostic purposes). Name at least two high-level programming languages
for which newline characters would not be ignored for syntax analysis.

3. Which of the following will cause an error message from your Java com-
piler?

(a) A comment inside a quoted string:

"this is /*not*/ a comment"

(b) A quoted string inside a comment

/*this is "not" a string*/

(c) A comment inside a comment

/*this is /*not*/ a comment*/

(d) A quoted string inside a quoted string

"this is "not" a string"

4. Write a Java method to sum the codes of the characters in a given String:
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public int sum (String s)

{ ... }

2.2 Implementation with Finite State Machines

Finite state machines can be used to simplify lexical analysis. We will begin
by looking at some examples of problems which can be solved easily with finite
state machines. Then we will show how actions can be included to process the
input, build a symbol table, and provide output.

A finite state machine can be implemented very simply by an array in which
there is a row for each state of the machine and a column for each possible
input symbol. This array will look very much like the table form of the finite
state machine shown in Figure 2.3. It may be necessary or desirable to code
the states and/or input symbols as integers, depending on the implementation
programming language. Once the array has been initialized, the operation of
the machine can be easily simulated, as shown below:

boolean [] accept = new boolean [STATES];

int [][] fsm = new int[STATES][INPUTS]; // state table

// initialize table here...

int inp = 0; // input symbol (0..INPUTS)

int state = 0; // starting state;

try

{ inp = System.in.read() - ’0’; // character input,

// convert to int.

while (inp>=0 && inp<INPUTS)

{ state = fsm[state][inp]; // next state

inp = System.in.read() - ’0’; // get next input

}

} catch (IOException ioe)

{ System.out.println ("IO error " + ioe); }

if (accept[state])

System.out.println ("Accepted"); System.out.println ("Rejected");

When the loop terminates, the program would simply check to see whether
the state is one of the accepting states to determine whether the input is ac-
cepted. This implementation assumes that all input characters are represented
by small integers, to be used as subscripts of the array of states.

2.2.1 Examples of Finite State Machines for Lexical Anal-
ysis

An example of a finite state machine which accepts any identifier beginning
with a letter and followed by any number of letters and digits is shown in
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❥ ❥❣❥L

D

L,D

L,D

✲

Figure 2.4: Finite state machine to accept identifiers

❥ ❥ ❥ ❥ ❥❣❥
D

D

.

D

Ee ±

D
D D

Ee

dead

✲

Figure 2.5: Finite state machine to accept numeric constants (all unspecified transitions
are to the dead state)

Figure 2.4. The letter ‘L’ represents any letter (a-z), and the letter ‘D’ represents
any numeric digit (0-9). This implies that a preprocessor would be needed to
convert input characters to tokens suitable for input to the finite state machine.

A finite state machine which accepts numeric constants is shown in Fig-
ure 2.5.

Note that these constants must begin with a digit, and numbers such as
.099 are not acceptable. This is the case in some languages, such as Pascal,
whereas Java does permit constants which do not begin with a digit. We could
have included constants which begin with a decimal point, but this would have
required additional states.

A third example of the use of state machines in lexical analysis is shown
in Figure 2.6. This machine accepts the keywords if, int, import, for, float.
This machine is not completely specified, because in order for it to be used
in a compiler it would have to accommodate identifiers as well as keywords.
In particular, identifiers such as i, wh, fo, which are prefixes of keywords, and
identifiers such as fork, which contain keywords as prefixes, would have to be
handled. This problem will be discussed below when we include actions in the
finite state machine.
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❢ ❢ ❢ ❢ ❢ ❢❢❢ ❢❢ ❢ ❢
❝❢ ❝❢❝❢❝❢ ❝❢
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Figure 2.6: Finite state machine to accept key words

void p()

{ if (parity==0) parity = 1;

else parity = 0;

} ❣ ❞❣0

1/p()

1/p()

0

✲

Figure 2.7: Parity Bit Generator

2.2.2 Actions for Finite State Machines

At this point, we have seen how finite state machines are capable of specifying
a language and how they can be used in lexical analysis. But lexical analysis
involves more than simply recognizing words. It may involve building a symbol
table, converting numeric constants to the appropriate data type, and putting
out tokens. For this reason, we wish to associate an action, or function to be
invoked, with each state transition in the finite state machine.

This can be implemented with another array of the same dimension as the
state transition array, which would be an arrray of functions to be called as each
state transition is made. For example, suppose we wish to put out keyword
tokens corresponding to each of the keywords recognized by the machine of
Figure 2.6. We could associate an action with each state transition in the finite
state machine. Moreover, we could recognize identifiers and call a function to
store them in a symbol table.

In Figure 2.7 we show an example of a finite state machine with actions.
The purpose of the machine is to generate a parity bit so that the input string
and parity bit will always have an even number of ones. The parity bit, parity,
is initialized to 0 and is complemented by the function p().
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Sample Problem 2.2.1

Design a finite state machine, with actions, to read numeric
strings and convert them to an appropriate internal format, such
as floating point.

Solution:

In the state diagram shown below we have included method calls
designated digits(), decimals(), minus(), and expDigits() which are
to be invoked as the corresponding transition occurs. In other words,
a transition marked i/p means that if the input is i, invoke method
p() before changing state and reading the next input symbol.❣

❣ ❣
❞❣❞❣❞❣

d/digits

d/digits,

•

d/decimals,
Ee +

d/expDigits
d/expDigits

d/expDigits

−/minus

dead

✲

All unspecified transitions are to the dead state.

The methods referred to in the state diagram are shown below:

// instance variables

int d; // A single digit, 0..9

int places=0; // places after the decimal point

int mantissa=0; // all the digits in the number

int exp=0; // exponent value

int signExp=+1; // sign of the exponent
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// process digits before the decimal point

void digits()

{ mantissa = mantissa * 10 + d; }

// process digits after the decimal point

void decimals()

{ digits();

places++; // count places after the decimal point

}

// Change the sign of the exponent

void minus()

{ signExp = -1; }

// process digits after the E

void expDigits()

{ exp = exp*10 + d; }

The value of the numeric constant may then be computed as fol-
lows:

double result = mantissa * Math.pow (10, signExp * exp - places);

where Math.pow(x, y) = xy

2.2.3 Exercises

1. Show a finite state machine which will recognize the words RENT, RE-
NEW, RED, RAID, RAG, and SENT. Use a different accepting state for
each of these words.

2. Modify the finite state machine of Figure 2.5 to include numeric constants
which begin with a decimal point and have digits after the decimal point,
such as .25, without excluding any constants accepted by that machine.

3. Add actions to your solution to the previous problem so that numeric
constants will be computed as in Sample Problem ??.

4. Show a finite state machine that will accept C-style comments /* as shown
here */. Use the symbol A to represent any character other than * or /;
thus the input alphabet will be {/,*,A}.
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5. What is the output of the finite state machine, below, for each of the
following inputs (L represents any letter, and D represents any numeric
digit; also, assume that each input is terminated with a period):❣ ❣❣ ❞❣L/p1

D

L/p2

D/p3

./p4

L,D

✲

int sum;

void p1() void p2()

{ sum = L; } { sum += L; }

void p3() int hash (int n)

{ sum += D; } { return n % 10; }

void p4()

{ System.out.println(hash(sum)); }

(a) ab3.

(b) xyz.

(c) a49.

6. Show the values that will be asigned to the variable mantissa in Sample
Problem ?? as the input string 46.73e-21 is read.

2.3 Lexical Tables

One of the most important functions of the lexical analysis phase is the cre-
ation of tables which are used later in the compiler. Such tables could include a
symbol table for identifiers, a table of numeric constants, string constants, state-
ment labels, and line numbers for languages such as Basic. The implementation
techniques discussed below could apply to any of these tables.

2.3.1 Sequential Search

The table could be organized as an array or linked list. Each time a word is
encountered, the list is scanned and if the word is not already in the list, it is
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bat cat

bird

hill

tree

frog

tree

hill

frog

cat

bird

bat

(a) (b)

Figure 2.8: (a) A balanced binary search tree and (b) a binary search tree which
is not balanced

added at the end. As we learned in our data structures course, the time required
to build a table of n words is O(n2). This sequential search technique is easy to
implement but not very efficient, particularly as the number of words becomes
large. This method is generally not used for symbol tables, or tables of line
numbers, but could be used for tables of statement labels, or constants.

2.3.2 Binary Search Tree

The table could be organized as a binary tree having the property that all of
the words in the left subtree of any word precede that word (according to a
sort sequence), and all of the words in the right subtree follow that word. Such
a tree is called a binary search tree. Since the tree is initially empty, the first
word encountered is placed at the root. Each time a word, w, is encountered
the search begins at the root; w is compared with the word at the root. If w
is smaller, it must be in the left subtree; if it is greater, it must be in the right
subtree; and if it is equal, it is already in the tree. This is repeated until w has
been found in the tree, or we arrive at a leaf node not equal to w, in which case
w must be inserted at that point. Note that the structure of the tree depends
on the sequence in which the words were encountered as depicted in Figure 2.8,
which shows binary search trees for (a) frog, tree, hill, bird, bat, cat and for
(b) bat, bird, cat, frog, hill, tree. As you can see, it is possible for the tree to
take the form of a linked list (in which case the tree is said not to be balanced).
The time required to build such a table of n words is O(n logn) in the best case
(the tree is balanced), but could be O(n2) in the worst case (the tree is not
balanced).

The student should bear in mind that each word should appear in the table
only once, regardless how many times it may appear in the source program. In
a later chapter we will see how the symbol table is used and what additional
information is stored in it.
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0. tree hill bird cat

1.

2.

3.

4. frog

5. bat

hash(frog) = (4+102)%6 = 4
hash(tree) = (4+116)%6 = 0
hash(hill) = (4+104)%6 = 0
hash(bird) = (4+98)%6 = 0
hash(bat) = (3+98)%6 = 5
hash(cat) = (3+99)%6 = 0

Figure 2.9: Hash table corresponding to the words entered for Figure 2.8 (a)

2.3.3 Hash Table

A hash table can also be used to implement a symbol table, a table of constants,
line numbers, etc. It can be organized as an array, or as an array of linked lists,
which is the method used here. We start with an array of null pointers, each
of which is to become the head of a linked list. A word to be stored in the
table is added to one of the lists. A hash function is used to determine which
list the word is to be stored in. This is a function which takes as argument
the word itself and returns an integer value which is a valid subscript to the
array of pointers. The corresponding list is then searched sequentially, until
the word is found already in the table, or the end of the list is encountered,
in which case the word is appended to that list. The selection of a good hash
function is critical to the efficiency of this method. Generally, we will use some
arithmetic combination of the letters of the word, followed by dividing by the
size of the hash table and taking the remainder. An example of a hash function
would be to add the length of the word to the ascii code of the first letter and
take the remainder on division by the array size, so that hash(bird) = (4+98)
size of the array of pointers. The resulting value will always be in the range
0..HASHMAX-1 and can be used as a subscript to the array. Figure 2.9 depicts
the hash table corresponding to the words entered for Figure 2.8 (a), where the
value of HASHMAX is 6. Note that the structure of the table does not depend
on the sequence in which the words are encountered (though the sequence of
words in a particular list could vary).

2.3.4 Exercises

1. Show the binary search tree which would be constructed to store each of
the following lists of identifiers:
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(a) minsky, babbage, turing, ada, boole, pascal, vonneuman

(b) ada, babbage, boole, minsky, pascal, turing, vonneuman

(c) sum, x3, count, x210, x, x33

2. Show how many string comparisons would be needed to store a new iden-
tifier in a symbol table organized as a binary search tree containing:

(a) 2047 identifiers, and perfectly balanced

(b) 2047 identifiers which had been entered inalphabetic order (worst case)

(c) 2n − 1 identifiers, perfectly balanced

(d) n identifers, and perfectly balanced

3. Write a program in Java which will read a list of words from the keyboard,
one word per line. If the word has been entered previously, the output
should be OLD WORD. Otherwise the output should be NEW WORD.
Use the following declaration to implement a binary search tree to store
the words.

class Node

{ Node left;

String data;

Node right;

public Node (String s)

{ left = right = null;

data = s

}

}

Node bst;

4. Many textbooks on data structures implement a hash table as an array
of words to be stored, whereas we suggest implementing with an array of
linked lists. What is the main advantage of our method? What is the
main disadvantage of our method?

5. Show the hash table which would result for the following identifiers using
the example hash function of Section 2.3.3: bog, cab, bc, cb, h33, h22,
cater.

6. Show a single hash function for a hash table consisting of ten linked lists
such that none of the word sequences shown below causes a single collision.

(a) ab, ac, ad, ae

(b) ae, bd, cc, db

(c) aa, ba, ca, da
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7. Show a sequence of four identifiers which would cause your hash function
defined in the previous problem to generate a collision for each identifier
after the first.

2.4 Lexical Analysis with SableCC

The Unix programming environment includes several utility programs which are
intended to improve the programmer’s productivity. Included among these util-
ities are lex, for lexical analysis, and yacc (yet another compiler-compiler), for
syntax analysis. These utilities generate compilers from a set of specifications
and are designed to be used with the C programming language. When Java
became popular, several replacements for lex and yacc became freely available
on the internet: JLex, for lexical analysis; CUP (Constructor of Useful Parsers);
ANTLR (Another Tool for Language Recognition); JavaCC, from Sun Microsys-
tems; and SableCC, from McGill University. Of these, JavaCC is probably the
most widely used. However, SableCC has several advantages over JavaCC:

• SableCC is designed to make good use of the advantages of Java; it is
object-oriented and makes extensive use of class inheritance.

• With SableCC compilation errors are easier to fix.

• SableCC generates modular software, with each class in a separate file.

• SableCC generates syntax trees, from which atoms or code can be gener-
ated.

• SableCC can accommodate a wider class of languages than JavaCC (which
permits only LL(1) grammars).

For these reasons we will be using SableCC, though all of our examples can also
be done using JavaCC, JLex, or ANTLR.

Unlike the lex/yacc utilities which could be used separately or together for
lexical and syntax analysis, respectively, SableCC combines lexical and syntax
analysis into a single program. Since we have not yet discussed syntax anal-
ysis, and we wish to run SableCC for lexical analysis, we provide a SableCC
template for the student to use. For more documentation on SableCC visit
http://www.sablecc.org.

2.4.1 SableCC Input File

The input to SableCC consists of a text file, named with a .grammar suffix,
with six sections; we will use only the first four of these sections in this chapter:

1. Package declaration

2. Helper declarations

3. States declarations

http://www.sablecc.org


52 CHAPTER 2. LEXICAL ANALYSIS

4. Token declarations

5. Ignored tokens

6. Productions

At the present time the student may ignore the Ignored tokens and Produc-
tions sections, whereas the sections on Helper declarations, States declarations,
and Token declarations are relevant to lexical analysis. The required Java classes
will be provided to the student as a standard template. Consequently, the input
file, named language.grammar will be arranged as shown below:

Package package-name ;

Helpers

[ Helper declarations, if any, go here ]

States

[ State declarations, if any, go here ]

Tokens

[ Token declarations go here ]

Helpers, States, and Tokens will be described in the following sub-sections,
although not in that sequence. All names, whether they be Helpers, States, or
Tokens should be written using lower case letters and underscore characters.
In any of these sections, single-line comments, beginning with //, or multi-line
comments, enclosed in /* .. */ may be used.

2.4.1.1 Token Declarations

All lexical tokens in SableCC must be declared (given a name) and defined using
the operations described here. These tokens are typically the ”words” which are
to be recognized in the input language, such as numbers, identifiers, operators,
keywords, .... A Token declaration takes the form:

Token-name = Token-definition ;
For example: left_paren = ‘(’ ;

A Token definition may be any of the following:

• A character in single quotes, such as ’w’, ’9’, or ’$’.

• A number, written in decimal or hexadecimal, matches the character with
that ascii (actually unicode) code. Thus, the number 13 mathches a new-
line character (the character ’\n’ works as well).

• A set of characters, specified in one of the following ways:

– A single quoted character qualifies as a set consisting of one character.



2.4. LEXICAL ANALYSIS WITH SABLECC 53

– A range of characters, with the first and last placed in brackets:

– [’a’..’z’] // all lower case letters

– [’0’..’9’] // all numeric characters

– [9..99] // all characters whose codes are in the range 9 through 99,inclusive

– A union of two sets, specified in brackets with a plus as in [set1 + set2].
Example:

[[’a’..’z’] + [’A’..’Z’]] // matches any letter

– A difference of two sets, specified in brackets with a minus as in
[set1 - set2] This matches any character in set1 which is not also
in set2. Example:

[[0..127] - [’\t’ + ’\n’]]

// matches any ascii character

// except tab and newline.

• A string of characters in single quotes, such as ’while’.

Regular expressions, with some extensions to the operators described in
section 2.0.3, may also be used in token definitions. If p and q are token
definitions, then so are:

• (p) parentheses may be used to determine the order of operations (prece-
dence is as defined in section 2.0.3.

• pq the concatenation of two token definitions is a valid token definition.

• p|q the union of two token definitions (note the plus symbol has a different
meaning).

• p* the closure (kleene *) is a valid token definition, matching 0 or more
repetitions of p.

• p+ similar to closure, matches 1 or more repetitions of the definition p.

• p? matches an optional p, i.e. 0 or 1 repetitions of the definition p.

Note the two distinct uses of the ’+’ symbol: If s1 and s2 are sets, [s1+s2]
is their union. If p is a regular expression, p+ is also a regular expression. To
specify union of regular expressions, use ′|′. Some examples of token definitions
are shown below:

number = [’0’..’9’]+ ; // A number is 1 or more

// decimal digits.

// An identifier must begin with an alphabetic character:

identifier = [[’a’..’z’]+[[’A’..’Z’]]

([’a’..’z’] | [’A..’Z’] | [’0’..’9’] | ’_’)* ;
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// Six relational operators:

rel_op = [’<’ + ’>’] ’=’? | ’==’ | ’!=’ ;

There are two important rules to remember when more than one token def-
inition matches input characters at a given point in the input file:

• When two token definitions match the input, the one matching the longer
input string is selected.

• When two token definitions match input strings of the same length, the
token definition listed first is selected. For example, the following would
not work as desired:

Tokens

identifier = [’a’..’z’]+ ;

keyword = ’while’ | ’for’ | ’class’ ;

An input of ‘while’ would be returned as an identifier, as would an input
of ‘whilex’.

Instead the tokens should be defined as:

Tokens

keyword = ’while’ | ’for’ | ’class’ ;

identifier = [’a’..’z’]+ ;

With this definition, the input ‘whilex’ would be returned as an identi-
fier, because the keyword definition matches 5 characters, ’while’, and the
identifier definition matches 6 characters, ‘whilex’; the longer match is se-
lected. The input ‘while’ would be a keyword; since it is matched by two
definitions, SableCC selects the first one, keyword.

2.4.1.2 Helper Declarations

The definition of identifier, above, could have been simplified with a macro
capability. Helpers are permitted for this purpose. Any helper which is defined
in the Helpers section may be used as part of a token defnition in the Tokens
section. For example, we define three helpers below to facilitate the definitions
of number, identifier, and space:

Helpers

digit = [’0’..’9’] ;

letter = [[’a’..’z’] + [’A’..’Z’]] ;

sign = ’+’ | ’-’ ;

newline = 10 | 13 ; // ascii codes
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tab = 9 ; // ascii code for tab

Tokens

number = sign? digit+ ; // A number is an optional

// sign, followed by 1 or more digits.

// An identifier is a letter followed by 0 or more letters,

// digits, or underscores:

identifier = letter (letter | digit | ’_’)* ;

space = ’ ’ | newline | tab ;

Students who may be familiar with macros in the unix utility lex will see an
important distinction here. Whereas in lex, macros are implemented as textual
substitutions, in SableCC helpers are implemented as semantic substitutions.
For example, the definition of number above, using lex would be obtained by
substituting directly the definition of sign into the definition of number:

number = sign? digit+

= ’+’ | ’-’? [’0’..’9’]+

= ’+’ | (’-’? [’0’..’9’]+)

This says that a number is either a plus or an optional minus followed by
one or more digits, which is not what the user intended. We have seen many
students trip on this stumbling block when using lex, which has finally been
eliminated by the developers of SableCC.

Sample Problem 2.4.1

Show the sequence of tokens which would be recognized by the pre-
ceding definitions of number, identifier, and space for the following
input (also show the text which corresponds to each token):

334 abc abc334

Solution:

number 334
space
identifier abc
space
identifier abc334
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2.4.1.3 State Declarations, Left Context, and Right Context

For purposes of lexical analysis, it is often helpful to be able to place the lexical
scanner in one or more different states as it reads the input (it is, after all, a
finite state machine). For example, the input ’sum + 345’ would normally be
returned as three tokens: an identifier, an arithmetic operator, and a number.
Suppose, however, that this input were inside a comment or a string:

// this is a comment sum + 345

In this case the entire comment should be ignored. In other words, we wish
the scanner to go into a different state, or mode of operation, when it sees the
two consecutive slashes. It should remain in this state until it encounters the
end of the line, at which point it would return to the default state. Some other
uses of states would be to indicate that the scanner is processing the characters
in a string; the input character is at the beginning of a line; or some other left
context, such as a ‘$’ when processing a currency value. To use states, simply
identify the names of the states as a list of names separated by commas in the
States section:

States

statename1, statename2, statename3,... ;

The first state listed is the start state; the scanner will start out in this state.
In the Tokens section, any definition may be preceded by a list of state names
and optional state transitions in curly braces. The definition will be applied
only if the scanner is in the specified state:

{statename} token = def ; // apply this definition only if the scanner is

// in state statename (and remain in that

// state)

How is the scanner placed into a particular state? This is done with the
transition operator, − >. A transition operator may follow any state name
inside the braces:

{statename->newstate} token = def;

// apply this definition only if the scanner is in statename,

// and change the state to newstate.

A definition may be associated with more than one state:
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{state1->state2, state3->state4, state5} token = def;

// apply this definition only if the scanner is in state1

// (change to state2), or if the scanner is in state3

// (change to state4), or if the scanner is in state5

// (remain in state5).

Definitions which are not associated with any states may be applied regard-
less of the state of the scanner:

token = def; // apply this definition regardless of the current state of the

// scanner.

The following example is taken from the SableCC web site. Its purpose is
to make the scanner toggle back and forth between two states depending on
whether it is at the beginning of a line in the input. The state bol represents
beginning of line, and inline means that it is not at the beginning of a line. The
end-of-line character may be just ’\n’, or 13, but on some systems it could be
10 (linefeed), or 10 followed by 13. For portability, this scanner should work on
any of these systems.

States

bol, inline; // Declare the state names. bol is

// the start state.

Tokens

{bol->inline, inline} char = [[0..0xffff] - [10 + 13]];

// Scanning a non-newline char. Apply

// this in either state, New state is inline.

{bol, inline->bol} eol = 10 | 13 | 10 13;

// Scanning a newline char. Apply this in

// either state. New state is bol.

In general, states can be used whenever there is a need to accommodate a
left context for a particular token definition.

Sample Problem 2.4.2

Show the token and state definitions needed to process a text file
containing numbers, currency values, and spaces. Currency values
begin with a dollar sich, such as ‘$3045’ and ‘$9’. Assume all num-
bers and currency values are whole numbers. Your definitions should
be able to distinguish between currency values (money) and ordinary
numbers (number). You may also use helpers.

Solution:
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Helpers

num = [’0’..’9’]+ ; // 1 or more digits

States

def, currency; // def is start state

Tokens

space = (’ ’ | 10 | 13 | ’\t’) ;

{def -> currency} dollar = ’$’ ; // change to currency state

{currency -> def} money = num; // change to def state

{def} number = num; // remain in def state

It is also possible to specify a right context for tokens. This is done with a
forward slash (’/’). To recognize a particular token only when it is followed by
a certain pattern, include that pattern after the slash. The token, not including
the right context (i.e. the pattern), will be matched only if the right context
is present. For example, if you are scanning a document in which all currency
amounts are followed by DB or CR, you could match any of these with:

currency = number / space* ’DB’ | number / space * ’CR’ ;

In the text:

Your bill is 14.50 CR, and you are 12 days late.

SableCC would find a currency token as ‘14.50’ (it excludes the ‘ CR’ which
is the right context). The ‘12’ would not be returned as a currency token because
the right context is not present.

2.4.1.4 Ignored Tokens

The Ignored Tokens section of the SableCC grammar file is optional. It provides
the capability of declaring tokens that are ignored (not put out by the lexer).
Typically things like comments and white space will be ignored. The declaration
takes the form of a list of the ignored tokens, separated by commas, and ending
with a semicolon, as shown in the following example:

Ignored Tokens

space, comment ;
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2.4.1.5 An Example of a SableCC Input File

Here we provide a complete example of a SableCC input file (a ”grammar”)
along properly. The student should make modifications to the source code given
here with two Java classes which need to be defined in order for it to execute
in order to test other solutions on the computer. The example will produce a
scanner which will recognize numbers (ints), identifiers, arithmetic operators,
relational operators, and parentheses in the input file. We call this example
”lexing”, because it demonstrates how to generate a lexical scanner; the source
code is placed in a file called lexing.grammar (we will learn about grammars in
Chapter 3).

Package lexing ; // A Java package is produced for the

// generated scanner

Helpers

num = [’0’..’9’]+; // A num is 1 or more decimal digits

letter = [’a’..’z’] | [’A’..’Z’] ;

// A letter is a single upper or

// lowercase character.

Tokens

number = num; // A number token is a whole number

ident = letter (letter | num)* ;

// An ident token is a letter followed by

// 0 or more letters and numbers.

arith_op = [ [’+’ + ’-’ ] + [’*’ + ’/’ ] ] ;

// Arithmetic operators

rel_op = [’<’ + ’>’] | ’==’ | ’<=’ | ’>=’ | ’!=’ ;

// Relational operators

paren = [’(’ + ’)’]; // Parentheses

blank = (’ ’ | ’\t’ | 10 | ’\n’)+ ; // White space

unknown = [0..0xffff] ;

// Any single character which is not part

// of one of the above tokens.

2.4.2 Running SableCC

Before running SableCC, a class containing a main method must be defined. A
sample of this class is shown below, and is available at cs.rowan.edu/∼bergmann/books.
This Lexing class is designed to be used with the grammar shown above in sec-
tion 2.4.1. Each token name is prefixed by a ’T’, so you should modify the token
names to conform to your own needs. A special token, EOF, represents the end
of the input file.

package lexing;
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import lexing.lexer.*;

import lexing.node.*;

import java.io.*; // Needed for pushbackreader and

// inputstream

class Lexing

{

static Lexer lexer;

static Object token;

public static void main(String [] args)

{

lexer = new Lexer

(new PushbackReader

(new InputStreamReader (System.in), 1024));

token = null;

try

{

while ( ! (token instanceof EOF))

{ token = lexer.next(); // read next token

if (token instanceof TNumber)

System.out.print ("Number: ");

else if (token instanceof TIdent)

System.out.print ("Identifier: ");

else if (token instanceof TArithOp)

System.out.print ("Arith Op: ");

else if (token instanceof TRelOp)

System.out.print ("Relational Op: ");

else if (token instanceof TParen)

System.out.print ("Parentheses ");

else if (token instanceof TBlank) ;

// Ignore white space

else if (token instanceof TUnknown)

System.out.print ("Unknown ");

if (! (token instanceof TBlank))

System.out.println (token); // print token as a string

}

}

catch (LexerException le)

{ System.out.println ("Lexer Exception " + le); }

catch (IOException ioe)

{ System.out.println ("IO Exception " +ioe); }

}

}

There is now a two-step process to generate your scanner. The first step is
to generate the Java class definitions by running SableCC. This will produce
a sub-directory, with the same name as the language being compiled. All the
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generated java code is placed in this sub-directory. Invoke SableCC as shown
below:

sablecc languagename.grammar

(The exact form of this system command could be different depending on
how SableCC has been installed on your computer) In our example it would be:

sablecc lexing.grammar

The second step required to generate the scanner is to compile these Java
classes. First. copy the Lexing.java file from the web site to your lexing sub-
directory, and make any necessary changes. Then compile the source files from
the top directory:

javac languagename/*.java

In our case this would be:

javac lexing/*.java

We have now generated the scanner in lexing.Lexing.class. To execute the
scanner:

java languagename.Classname

In our case this would be:

java lexing.Lexing

This will read from the standard input file (keyboard) and should display
tokens as they are recognized. Use the end-of-file character to terminate the
input (ctrl-d for unix, ctrl-z for Windows/DOS). A sample session is shown
below:

java lexing.Lexing

sum = sum + salary ;

Identifier: sum

Unknown =

Identifier: sum

Arith Op: +

Identifier: salary

Unknown ;
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2.4.3 Exercises

1. Modify the given SableCC lexing.grammar file and lexing/Lexing.java file
to recognize the following 7 token classes.

(1) Identifier (begins with letter, followed by letters, digits, _)

(2) Numeric constant (float or int)

(3) = (assignment)

(4) Comparison operator (== < > <= >= !=)

(5) Arithmetic operator ( + - * / )

(6) String constant "inside double-quote marks"

(7) Keyword ( if else while do for class )

Comments /* Using this method */

// or this method, but don’t print a token

// class.

2. Show the sequence of tokens recognized by the following definitions for
each of the input files below:

Helpers

char = [’a’..’z’] [’0’..’9’]? ;

Tokens

token1 = char char ;

token2 = char ’x’ ;

token3 = char+ ;

token4 = [’0’..’9’]+ ;

space = ’ ’ ;

Input files:

(a) a1b2c3

(b) abc3 a123

(c) a4x ab r2d2

2.5 Case Study: Lexical Analysis for Decaf

In this section we present a description of the lexical analysis phase for the
subset of Java we call Decaf. This represents the first phase in our case study:
a complete Decaf compiler. The lexical analysis phase is implemented in the
Helpers and Tokens sections of the SableCC source file, which is shown in its
entirety in Appendix B.2 (refer to the file decaf.grammar).

The Decaf case study is implemented as a two-pass compiler. The syntax
and lexical phases are implemented with SableCC. The result is a file of atoms,
and a file of numeric constants. These two files form the input for the code
generator, which produces machine code for a simulated machine, called mini.
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In this section we describe the first two sections of the SableCC source file for
Decaf, which are used for lexical analysis.

The Helpers section, shown below, defines a few macros which will be useful
in the Tokens section. A letter is defined to be any single letter, upper or
lower case. A digit is any single numeric digit. A digits is a string of one or
more digits. An exp is used for the exponent part of a numeric constant, such
as 1.34e12i. A newline is an end-of-line character (for various systems). A
non star is any unicode character which is not an asterisk. A non slash is any
unicode character which is not a (forward) slash. A non star slash is any unicode
character except for asterisk or slash. The helpers non star and non slash are
used in the description of comments. The Helpers section, with an example for
each Helper, is shown below:

Helpers // Examples

letter = [’a’..’z’] | [’A’..’Z’] ; // w

digit = [’0’..’9’] ; // 3

digits = digit+ ; // 2040099

exp = [’e’ + ’E’] [’+’ + ’-’]? digits; // E-34

newline = [10 + 13] ; // ’\n’

non_star = [[0..0xffff] - ’*’] ; // /

non_slash = [[0..0xffff] - ’/’]; // *

non_star_slash = [[0..0xffff] - [’*’ + ’/’]]; // $

States can be used in the description of comments, but this can also be done
without using states. Hence, we will not have a States section in our source file.

The Tokens section, shown below, defines all tokens that are used in the
definition of Decaf. All tokens must be named and defined here. We begin with
definitions of comments; note that in Decaf, as in Java, there are two kinds of
comments: (1) single line comments, which begin with ‘//’ and terminate at a
newline, and (2) multi-line comments, which begin with ‘/*’ and end with ‘*/’.
These two kinds of comments are called comment1 and comment2, respectively.
The definition of comment2, for multi-line comments, was designed using a finite
state machine model as a guide (see exercise 4 in section 2.2). Comments are
listed with white space as Ignored Tokens, i.e. the parser never even sees these
tokens.

A space is any white space, including tab (9) and newline (10, 13) characters.
Each keyword is defined as itself. The keyword class is an exception; for some
reason SableCC will not permit the use of class as a name, so it is shortened to
clas. A language which is not case-sensitive, such as BASIC or Pascal, would
require a different strategy for keywords. The keyword while could be defined
as

while = [’w’ + ’W’] [’h’ + ’H’] [’i’ + ’I’] [’l’ + ’L’] [’e’ + ’E’] ;

Alternatively, a preprocessor could convert all letters (not inside strings) to
lower case.
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A compare token is any of the six relational operators. The arithmetic
operators, parentheses, braces, brackets, comma, and semicolon are all given
names; this is tedious but unavoidable with SableCC. An identifier token is
defined to be a letter followed by 0 or more letters, digits, and underscores.
A number is a numeric constant which may have a decimal point and/or an
exponent part. This is where we use the Helper exp, representing the exponent
part of a number. Any character which has not been matched as part of the
above tokens is called a misc token, and will most likely cause the parser to
report a syntax error. The Tokens section is shown below:

Tokens

comment1 = ’//’ [[0..0xffff]-newline]* newline ;

comment2 = ’/*’ non_star* ’*’

(non_star_slash non_star* ’*’+)* ’/’ ;

space = ’ ’ | 9 | newline ; // 9 = tab

clas = ’class’ ; // key words (reserved)

public = ’public’ ;

static = ’static’ ;

void = ’void’ ;

main = ’main’ ;

string = ’String’ ;

int = ’int’ ;

float = ’float’ ;

for = ’for’ ;

while = ’while’ ;

if = ’if’ ;

else = ’else’ ;

assign = ’=’ ;

compare = ’==’ | ’<’ | ’>’ | ’<=’ | ’>=’ | ’!=’ ;

plus = ’+’ ;

minus = ’-’ ;

mult = ’*’ ;

div = ’/’ ;

l_par = ’(’ ;

r_par = ’)’ ;

l_brace = ’{’ ;

r_brace = ’}’ ;

l_bracket = ’[’ ;

r_bracket = ’]’ ;

comma = ’,’ ;

semi = ’;’ ;

identifier = letter (letter | digit | ’_’)* ;

number = (digits ’.’? digits? | ’.’digits) exp? ;

misc = [0..0xffff] ;

This completes the description of the lexical analysis of Decaf. The imple-
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mentation makes use of the Java class Hashtable to implement a symbol table
and a table of numeric constants. This will be discussed further in Chapter 5
when we define the Translation class to be used with SableCC.

2.5.1 Exercises

1. Extend the SableCC source file for Decaf, decaf.grammar, to accommo-
date string constants and character constants (these files can be found at
http://cs.rowan.edu/∼bergmann/books). For purposes of this exercise,
ignore the section on productions. A string is one or more characters in-
side double-quotes, and a character constant is one character inside single-
quotes (do not worry about escape-chars, such as ‘
n’). Here are some examples, with a hint showing what your lexical scan-
ner should find:

INPUT HINT

"A long string" One string token

" Another ’c’ string" One string token

"one" ’x’ "three" A string, a char, a string

" // string " A string, no comment

// A "comment" A comment, no string

2. Extend the SableCC source file decaf.grammar given at www.rowan.edu/ bergmann/books
to permit a switch statement and a do while statement in Decaf:

1. SwitchStmt → switch (Expr) { CaseList }
2. CaseList → case NUM : StmtList
3. CaseList → case default: StmtList
4. CaseList → case NUM : StmtList CaseList
5. Stmt → break ;
6. DoStmt → do Stmt while ( Expr )

3. Revise the token definition of the number token in decaf.grammar to ex-
clude numeric constants which do not begin with a digit, such as .25 and
.03e-4. Test your solution by running the software.

4. Rather than having a separate token class for each Decaf keyword, the
scanner could have a single class for all keywords. Show the changes
needed in the file decaf.grammar to do this.

2.6 Chapter Summary

This chapter on Lexical Analysis began with some introductory theory of for-
mal languages and automata. A language, defined as a set of strings, is a vital
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concept in the study of programming languages and compilers. An automaton
is a theoretic machine, introduced in this chapter with finite state machines. It
was shown how these theoretic machines can be used to specify programming
language elements such as identifiers, constants, and keywords. We also intro-
duced the concept of regular expressions, which can be used to specify the same
language elements. Regular expressions are useful not only in lexical analysis,
but also in utility programs and editors such as awk, ed, and grep, in which it
is necessary to specify search patterns.

We then discussed the problem of lexical analysis in more detail, and showed
how finite state machine theory can be used to implement a lexical scanner. The
lexical scanner must determine the word boundaries in the input string. The
scanner accepts as input the source program, which is seen as one long string
of characters. Its output is a stream of tokens, where each token consists of a
class and possibly a value. Each token represents a lexical entity, or word, such
as an identifier, keyword, constant, operator, or special character.

A lexical scanner can be organized to write all the tokens to a file, at which
point the syntax phase is invoked and reads from the beginning of the file.
Alternatively, the scanner can be called as a subroutine to the syntax phase.
Each time the syntax phase needs a token it calls the scanner, which reads just
enough input characters to produce a single token to be returned to the syntax
phase.

We also showed how a lexical scanner can create tables of information, such
as a symbol table, to be used by subsequent phases of the compiler.

We introduced a compiler generator, SableCC, which includes a provision
for generating a lexical scanner, using regular expressions to specify patterns to
match lexical tokens in the source language. The SableCC source file consists of
three sections relevant to lexical analysis: (1) Helpers (i.e. macros); (2) States;
and (3) Tokens. We concluded the chapter with a look at a SableCC program
which implements the lexical scanner for our case study: Decaf.
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Syntax Analysis

The second phase of a compiler is called syntax analysis. The input to this
phase consists of a stream of tokens put out by the lexical analysis phase. They
are then checked for proper syntax, i.e. the compiler checks to make sure the
statements and expressions are correctly formed. Some examples of syntax
errors in Java are:

x = (2+3) * 9); // mismatched parentheses

if x>y x = 2; // missing parentheses

while (x==3) do f1(); // invalid keyword do

When the compiler encounters such an error, it should put out an informa-
tive message for the user. At this point, it is not necessary for the compiler
to generate an object program. A compiler is not expected to guess the in-
tended purpose of a program with syntax errors. A good compiler, however,
will continue scanning the input for additional syntax errors.

The output of the syntax analysis phase (if there are no syntax errors) could
be a stream of atoms or syntax trees. An atom is a primitive operation which
is found in most computer architectures, or which can be implemented using
only a few machine language instructions. Each atom also includes operands,
which are ultimately converted to memory addresses on the target machine. A
syntax tree is a data structure in which the interior nodes represent operations,
and the leaves represent operands, as discussed in Section 1.2.2. We will see
that the parser can be used not only to check for proper syntax, but to produce
output as well. This process is called syntax directed translation.

Just as we used formal methods to specify and construct the lexical scanner,
we will do the same with syntax analysis. In this case however, the formal
methods are far more sophisticated. Most of the early work in the theory of
compiler design focused on syntax analysis. We will introduce the concept of a

67
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formal grammar not only as a means of specifying the programming language,
but also as a means of implementing the syntax analysis phase of the compiler.

3.0 Grammars, Languages, and Pushdown Ma-

chines

Before we discuss the syntax analysis phase of a compiler, there are some con-
cepts of formal language theory which the student must understand. These
concepts play a vital role in the design of the compiler. They are also impor-
tant for the understanding of programming language design and programming
in general.

3.0.1 Grammars

Recall our definition of language from Chapter 2 as a set of strings. We have
already seen two ways of formally specifying a language: regular expressions and
finite state machines. We will now define a third way of specifying languages,
i.e. by using a grammar. A grammar is a list of rules which can be used to
produce or generate all the strings of a language, and which does not generate
any strings which are not in the language. More formally a grammar consists
of:

1. A finite set of characters, called the input alphabet, the input symbols, or
terminal symbols.

2. A finite set of symbols, distinct from the terminal symbols, called nonter-
minal symbols, exactly one of which is designated the starting nonterminal
(if no nonterminal is explicitly designated as the starting nonterminal, it
is assumed to be the nonterminal defined in the first rule).

3. A finite list of rewriting rules, also called productions, which define how
strings in the language may be generated. Each of these rewriting rules
is of the form a→ b, where a and b are arbitrary strings of terminals and
nonterminals, and a is not null.

The grammar specifies a language in the following way: beginning with the
starting nonterminal, any of the rewriting rules are applied repeatedly to pro-
duce a sentential form, which may contain a mix of terminals and nonterminals.
If at any point, the sentential form contains no nonterminal symbols, then it
is in the language of this grammar. If G is a grammar, then we designate the
language specified by this grammar as L(G).

A derivation is a sequence of rewriting rules, applied to the starting nonter-
minal, ending with a string of terminals. A derivation thus serves to demonstrate
that a particular string is a member of the language. Assuming that the starting
nonterminal is S, we will write derivations in the following form:

S ⇒ a⇒ b⇒ g ⇒ ...⇒ x
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where a, b, g are strings of terminals and/or nonterminals, and x is a string
of terminals.

In the following examples, we observe the convention that all lower case
letters and numbers are terminal symbols, and all upper case letters (or words
which begin with an upper case letter) are nonterminal symbols. The starting
nonterminal is always S unless otherwise specified. Each of the grammars shown
in this chapter will be numbered (G1, G2, G3, ...) for reference purposes. The
first example is grammar G1, which consists of four rules, the terminal symbols
{0,1}, and the starting nonterminal, S.

G1:
1. S → 0S0
2. S → 1S1
3. S → 0
4. S → 1

An example of a derivation using this grammar is:
S ⇒ 0S0⇒ 00S00⇒ 001S100⇒ 0010100
Thus, 0010100 is in L(G1), i.e. it is one of the strings in the language of

grammar G1. The student should find other derivations using G1 and verify
that G1 specifies the language of palindromes of odd length over the alphabet
{0,1}. A palindrome is a string which reads the same from left to right as it
does from right to left.

L(G1) = {0, 1, 000, 010, 101, 111, 00000, ... }
In our next example, the terminal symbols are {a,b} (ǫ represents the null

string and is not a terminal symbol).
G2:

1. S → ASB
2. S → ǫ
3. A → a
4. B → b

S ⇒ ASB ⇒ AASBB ⇒ AaSBB ⇒ AaBB ⇒ AaBb⇒ Aabb⇒ aabb
Thus, aabb is in L(G2). G2 specifies the set of all strings of a’s and b’s which

contain the same number of a’s as b’s and in which all the a’s precede all the
b’s. Note that the null string is permitted in a rewriting rule.

L(G2) = {ǫ, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, ...} = {anbn} such that
n ≥ 0

This language is the set of all strings of a’s and b’s which consist of zero or
more a’s followed by exactly the same number of b’s.

Two grammars, g1 and g2, are said to be equivalent if L(g1) = L(g2); i.e.,
they specify the same language. In this example (grammar G2) there can be
several different derivations for a particular string, i.e. the rewriting rules could
have been applied in a different sequence to arrive at the same result.

Sample Problem 3.0.1
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Show three different derivations using the grammar shown below:

1. S → a S A
2. S → B A
3. A → a b
4. B → b A

Solution:

S ⇒ a S A ⇒ a B A A ⇒ a B a b A ⇒ a B a b a b ⇒
a b A a b a b⇒ a b a b a b a b

S ⇒ a S A ⇒ a S a b ⇒ a B A a b ⇒ a b A A a b ⇒
a b a b A a b⇒ a b a b a b a b

S ⇒ B A⇒ b A A⇒ b a b A⇒ b a b a b

Note that in the solution to this problem we have shown that it
is possible to have more than one derivation for the same string:
abababab.

3.0.2 Classes of Grammars

In 1959 Noam Chomsky, a linguist, suggested a way of classifying grammars
according to complexity [7]. The convention used below, and in the remaining
chapters, is that the term string includes the null string and that, in referring
to grammars, the following symbols will have particular meanings:

A,B,C, ... A single nonterminal
a, b, c, ... A single terminal
..., X, Y, Z A single terminal or nonterminal
..., x, y, z A string of terminals
α, β, γ A string of terminals and nonterminals

Here is Chomsky’s classification of grammars:
0. Unrestricted: An unrestricted grammar is one in which there are no

restrictions on the rewriting rules. Each rule may consist of an arbitrary string
of terminals and nonterminals on both sides of the arrow (though e is permitted
on the right side of the arrow only). An example of an unrestricted rule would
be:
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SaB → cS

1. Context-Sensitive: A context-sensitive grammar is one in which each rule
must be of the form:

αAγ → αβγ

where each of α, β, and γ is any string of terminals and nonterminals (in-
cluding ǫ), and A represents a single nonterminal. In this type of grammar, it
is the nonterminal on the left side of the rule (A) which is being rewritten, but
only if it appears in a particular context, α on its left and γ on its right. An
example of a context-sensitive rule is shown below:

SaB → caB

which is another way of saying that an S may be rewritten as a c, but only
if the S is followed by aB (i.e. when S appears in that context). In the above
example, the left context is null.

2. Context-Free: A context-free grammar is one in which each rule must be
of the form:

A→ α

where A represents a single nonterminal and α is any string of terminals and
nonterminals. Most programming languages are defined by grammars of this
type; consequently, we will focus on context-free grammars. Note that both
grammars G1 and G2, above, are context-free. An example of a context-free
rule is shown below:

A→ aABb

3. Right Linear: A right linear grammar is one in which each rule is of the
form:

A→ aB

or

A→ a

where A and B represent nonterminals, and a represents a terminal. Right
linear grammars can be used to define lexical items such as identifiers, constants,
and keywords.

Note that every context-sensitive grammar is also in the unrestricted class.
Every context-free grammar is also in the context-sensitive and unrestricted
classes. Every right linear grammar is also in the context-free, context-sensitive,
and unrestricted classes. This is represented by the diagram of Figure 3.1, which
depicts the classes of grammars as circles. All points in a circle belong to the
class of that circle.

A context-sensitive language is one for which there exists a context-sensitive
grammar. A context-free language is one for which there exists a context-
free grammar. A right linear language is one for which there exists a right
linear grammar. These classes of languages form the same hierarchy as the
corresponding classes of grammars.

We conclude this section with an example of a context-sensitive grammar
which is not context-free.
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Right Linear
Context Free

Context Sensitive
Unrestricted

Figure 3.1: Classes of grammars

G3:
1. S → aSBC
2. S → ǫ
3. aB → ab
4. bB → bb
5. C → c
6. CB → CX
7. CX → BX
8. BX → BC

A derivation of the string aabbcc is shown below:
S ⇒ aSBC ⇒ aaSBCBC ⇒ aaBCBC ⇒ aaBCXC ⇒ aaBBXC ⇒

aaBBCC ⇒ aabBCC ⇒ aabbCC ⇒ aabbCc⇒ aabbcc
The student should perform other derivations to understand that
L(G3) = {ǫ, abc, aabbcc, aaabbbccc, ...}= {anbncn}wheren ≥ 0
i.e., the language of grammar G3 is the set of all strings consisting of a’s

followed by exactly the same number of b’s followed by exactly the same num-
ber of c’s. This is an example of a context-sensitive language which is not
also context-free; i.e., there is no context-free grammar for this language. An
intuitive understanding of why this is true is beyond the scope of this text.

Sample Problem 3.0.2

Classify each of the following grammar rules according to Chom-
sky’s classification of grammars (in each case give the largest - i.e.
most restricted - classification type that applies):
1. aSb→ aAcBb
2. B → aA
3. S → aBc
4. S → aBc
5. Ab→ b
6. AB → BA
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Solution:

1. Type 1, Context-Sensitive
2. Type 3, Right Linear
3. Type 0, Unrestricted
4. Type 2, Context-Free
5. Type 1, Context-Sensitive
6. Type 0, Unrestricted

3.0.3 Context-Free Grammars

Since programming languages are typically specified with context-free gram-
mars, we are particularly interested in this class of grammars. Although there
are some aspects of programming languages that cannot be specified with a
context-free grammar, it is generally felt that using more complex grammars
would only serve to confuse rather than clarify. In addition, context-sensitive
grammars could not be used in a practical way to construct the compiler.

Context-free grammars can be represented in a form called Backus-Naur
Form (BNF) in which nonterminals are enclosed in angle brackets <>, and the
arrow is replaced by a ::=, as shown in the following example:

< S >::= a < S > b
which is the BNF version of the grammar rule:
S → aSb
This form also permits multiple definitions of one nonterminal on one line,

using the alternation vertical bar (|).
< S >::= a < S > b|e
which is the BNF version of two grammar rules:

S → aSb
S → ǫ
BNF and context-free grammars are equivalent forms, and we choose to use
context-free grammars only for the sake of appearance.

We now present some definitions which apply only to context-free grammars.
A derivation tree is a tree in which each interior node corresponds to a nonter-
minal in a sentential form and each leaf node corresponds to a terminal symbol
in the derived string. An example of a derivation tree for the string aaabbb,
using grammar G2, is shown in Figure 3.2.

A context-free grammar is said to be ambiguous if there is more than one
derivation tree for a particular string. In natural languages, ambiguous phrases



74 CHAPTER 3. SYNTAX ANALYSIS

a
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A
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S
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B
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B

S
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Figure 3.2: A derivation tree for aaabbb using grammar G2
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Figure 3.3: Two different derivation trees for the string var + var * var

are those which may have more than one interpretation. Thus, the derivation
tree does more than show that a particular string is in the language of the
grammar - it shows the structure of the string, which may affect the meaning or
semantics of the string. For example, consider the following grammar for simple
arithmetic expressions:

G4:
1. Expr → Expr + Expr
2. Expr → Expr * Expr
3. Expr → ( Expr )
4. Expr → var
5. Expr → const

Figure 3.3 shows two different derivation trees for the string var+var*var,
consequently this grammar is ambiguous. It should be clear that the second
derivation tree in Figure 3.3 represents a preferable interpretation because it
correctly shows the structure of the expression as defined in most programming
languages (since multiplication takes precedence over addition). In other words,
all subtrees in the derivation tree correspond to subexpressions in the derived
expression. A nonambiguous grammar for expressions will be given in the next
section.

A left-most derivation is one in which the left-most nonterminal is always
the one to which a rule is applied. An example of a left-most derivation for
grammar G2 above is:

S ⇒ ASB ⇒ aSB ⇒ aASBB ⇒ aaSBB ⇒ aaBB ⇒ aabB ⇒ aabb

We have a similar definition for right-most derivation. A left-most (or right-
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most) derivation is a normal form for derivations; i.e., if two different deriva-
tions can be written in the same normal form, they are equivalent in that they
correspond to the same derivation tree. Consequently, there is a one-to-one cor-
respondence between derivation trees and left-most (or right-most) derivations
for a grammar.

Sample Problem 3.0.3

Determine whether the following grammar is ambiguous. If so,
show two different derivation trees for the same string of terminals,
and show a left-most derivation corresponding to each tree.

1. S → aSbS
2. S → aS
3. S → c

Solution:

a

a

c

S

S b

c

S

S

a

a

c

S b

c

S

S

S

S ⇒ a S b S ⇒ a a S b S ⇒ a a c b S ⇒ a a c b c
S ⇒ a S ⇒ a a S b S ⇒ a a c b S ⇒ a a c b c
We note that the two derivation trees correspond to two different

left-most derivations, and the grammar is ambiguous.

3.0.4 Pushdown Machines

Like the finite state machine, the pushdown machine is another example of
an abstract or theoretic machine. Pushdown machines can be used for syntax
analysis, just as finite state machines are used for lexical analysis. A pushdown
machine consists of:
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• A finite set of states, one of which is designated the starting state.

• A finite set of input symbols, the input alphabet.

• An infinite stack and a finite set of stack symbols which may be pushed
on top or removed from the top of the stack in a last-in first-out manner.
The stack symbols need not be distinct from the input symbols. The stack
must be initialized to contain at least one stack symbol before the first
input symbol is read.

• A state transition function which takes as arguments the current state,
the current input symbol, and the symbol currently on top of the stack;
its result is the new state of the machine.

• On each state transition the machine may advance to the next input sym-
bol or retain the input pointer (i.e., not advance to the next input symbol).

• On each state transition the machine may perform one of the stack oper-
ations, push(X) or pop, where X is one of the stack symbols.

• A state transition may include an exit from the machine labeled either
Accept or Reject. This determines whether or not the input string is in
the specified language.

Note that without the infinite stack, the pushdown machine is nothing more
than a finite state machine as defined in Chapter 2. Also, the pushdown machine
halts by taking an exit from the machine, whereas the finite state machine halts
when all input symbols have been read.

An example of a pushdown machine is shown in Figure 3.4, in which the rows
are labeled by stack symbols and the columns are labeled by input symbols. The
←֓ character is used as an endmarker, indicating the end of the input string,
and the ▽ symbol is a stack symbol which we are using to mark the bottom of
the stack so that we can test for the empty stack condition. The states of the
machine are S1 (in our examples S1 will always be the starting state) and S2,
and there is a separate transition table for each state. Each cell of those tables
shows a stack operation (push() or pop), an input pointer function (advance
or retain), and the next state. Accept and Reject are exits from the machine.
The language of strings accepted by this machine is {anbn} where n ≥ 0 ; i.e.,
the same language specified by grammar G2, above. To see this, the student
should trace the operation of the machine for a particular input string. A trace
showing the sequence of stack configurations and states of the machine for the
input string aabb is shown in Figure 3.5. Note that while in state S1 the machine
is pushing X’s on the stack as each a is read, and while in state S2 the machine
is popping an X off the stack as each b is read.

An example of a pushdown machine which accepts any string of correctly
balanced parentheses is shown in Figure 3.6. In this machine, the input symbols
are left and right parentheses, and the stack symbols are X and ,. Note that this
language could not be accepted by a finite state machine because there could
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S1 a b ∇

Push (X) Pop

X Advance Advance Reject

S1 S2

Push (X)

↵ Advance Reject Accept ∇

Initial

S2 a b ∇ Stack

 Pop

X Reject Advance Reject

S2

 

↵ Reject Reject Accept

Figure 3.4: A pushdown machine to accept the language of grammar G2

a a X b b ↵

→ X → X → X →

∇ ∇ ∇ ∇ ∇

S1 S1 S1 S2 S2 Accept

Figure 3.5: Sequence of stacks as the pushdown machine of Figure 3.4 accepts
the input string aabb.
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S1 ( ) ↵

Push (X) Pop

X Advance Advance Reject

S1 S1

Push (X)

∇ Advance Reject Accept ∇

S1

Initial

Stack

Figure 3.6: A pushdown machine to accept any string of well-balanced paren-
theses

be an unlimited number of left parentheses before the first right parenthesis.
The student should compare the language accepted by this machine with the
language of grammar G2.

The pushdown machines, as we have described them, are purely deterministic
machines. A deterministic machine is one in which all operations are uniquely
and completely specified regardless of the input (computers are deterministic),
whereas a nondeterministic machine may be able to choose from zero or more
operations in an unpredictable way. With nondeterministic pushdown machines
it is possible to specify a larger class of languages. In this text we will not be
concerned with nondeterministic machines.

We define a pushdown translator to be a machine which has an output
function in addition to all the features of the pushdown machine described
above. We may include this output function in any of the cells of the state
transition table to indicate that the machine produces a particular output (e.g.
Out(x)) before changing to the new state.

We now introduce an extension to pushdown machines which will make them
easier to work with, but will not make them any more powerful. This extension
is the Replace operation designated Rep(X,Y,Z,...), where X, Y, and Z are any
stack symbols. The replace function replaces the top stack symbol with all
the symbols in its argument list. The Replace function is equivalent to a pop
operation followed by a push operation for each symbol in the argument list of
the replace function. For example, the function Rep (Term,+,Expr) would pop
the top stack symbol and push the symbols Term, +, and Expr in that order, as
shown on the stack in Figure 3.7. (In this case, the stack symbols are separated
by commas). Note that the symbols to be pushed on the stack are pushed in
the order listed, left to right, in the Replace function. An extended pushdown
machine is one which can use a Replace operation in addition to push and pop.

An extended pushdown machine is not capable of specifying any languages
that cannot be specified with an ordinary pushdown machine; it is simply in-
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Expr

+

Term Term

( → (

∇ ∇

Figure 3.7: Effect on the stack of Rep (Term, +, Expr)

cluded here as a convenience to simplify some problem solutions. An extended
pushdown translator is a pushdown translator which has a replace operation as
defined above.

An example of an extended pushdown translator, which translates simple
infix expressions involving addition and multiplication to postfix is shown in
Figure 3.8, in which the input symbol a represents any variable or constant.
An infix expression is one in which the operation is placed between the two
operands, and a postfix expression is one in which the two operands precede the
operation:

Infix Postfix

2 + 3 2 3 +

2 + 3 * 5 2 3 5 * +

2 * 3 + 5 2 3 * 5 +

(2 + 3) * 5 2 3 + 5 *

Note that parentheses are never used in postfix notation. In Figure 3.8 the
default state transition is to stay in the same state, and the default input pointer
operation is advance. States S2 and S3 show only a few input symbols and stack
symbols in their transition tables, because those are the only configurations
which are possible in those states. The stack symbol E represents an expression,
and the stack symbol L represents a left parenthesis. Similarly, the stack symbols
Ep and Lp represent an expression and a left parenthesis on top of a plus symbol,
respectively.

3.0.5 Correspondence Between Machines and Classes of
Languages

We now examine the class of languages which can be specified by a particular
machine. A language can be accepted by a finite state machine if, and only if,
it can be specified with a right linear grammar (and if, and only if, it can be
specified with a regular expression). This means that if we are given a right
linear grammar, we can construct a finite state machine which accepts exactly
the language of that grammar. It also means that if we are given a finite state
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S1 a + * ( ) N

pop pop

E Reject push(+) push(*) Reject retain retain

S3

pop pop pop

Ep Reject out(+) push(*) Reject retain retain

S2 S2

push(E)

L out(a) Reject Reject push(L) Reject Reject

push(E)

Lp out(a) Reject Reject push(L) Reject Reject

push(E)

Ls out(a) Reject Reject push(L) Reject Reject

push(Ep)

+ out(a) Reject Reject push(Lp) Reject Reject

pop

* out(a*) Reject Reject push(Ls) Reject Reject

push(E)

, out(a) Reject Reject push(L) Reject Accept

S2 ) N S3 )

pop pop Rep(E)

+ out(+) out(+) L S1

retain,S3 retain,S1

pop Rep(E)

* out(*) Reject Lp S1

S1 ,

pop

E retain Initial

Stack

pop

Ls retain

S2

, Reject

Figure 3.8: A pushdown translator for infix to postfix expressions



3.0. GRAMMARS, LANGUAGES, AND PUSHDOWN MACHINES 81

machine, we can write a right linear grammar which specifies the same language
accepted by the finite state machine.

There are algorithms which can be used to produce any of these three forms
(finite state machines, right linear grammars, and regular expressions), given
one of the other two (see, for example, Hopcroft and Ullman [12]). However,
here we rely on the student’s ingenuity to solve these problems.

Sample Problem 3.0.4

Show the sequence of stacks and states which the pushdown machine
of Figure 3.8 would go through if the input were: a+(a*a)

Solution:

*

E E E  

Lp Lp Lp Lp Lp Ep

a + + ( + a + * + a + ) +  + ↵

→ E → E → E → E → E → E → E → E →

∇ Out(a) ∇ ∇ ∇ Out(a) ∇ ∇ Out(a*) ∇ ∇ ∇

S1 S1 S1 S1 S1 S1 S1 S3 S1

   

+      

E → E →   Output:  aaa*+

∇ Out(+) ∇ ∇

S2 S1 S1 Accept
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Sample Problem 3.0.5

Give a right linear grammar for each of the languages of Sample
Problem 2.0.2.

Solution:

(1) Strings over {0,1} containing an odd number of 0’s.
1. S → 0
2. S → 1S
3. S → 0A
4. A→ 1
5. A→ 1A
6. A→ 0S

(2) Strings over {0,1} which contain three consecutive 1’s.
1. S → 1S
2. S → 0S
3. S → 1A
4. A→ 1B
5. B → 1C
6. B → 1
7. C → 1C
8. C → 0C
9. C → 1
10. C → 0

(3) Strings over {0,1} which contain exactly three 0’s.
1. S → 1S
2. S → 0A
3. A→ 1A
4. A→ 0B
5. B → 1B
6. B → 0C
7. B → 0
8. C → 1C
9. C → 1

(4) Strings over {0,1} which contain an odd number of 0’s and
an even number of 1’s.



3.0. GRAMMARS, LANGUAGES, AND PUSHDOWN MACHINES 83

1. S → 0A
2. S → 1B
3. S → 0
4. A→ 0S
5. A→ 1C
6. B → 0C
7. B → 1S
8. C → 0B
9. C → 1A
10. C → 1

We have a similar correspondence between machines and context-free lan-
guages. Any language which can be accepted by a deterministic pushdown ma-
chine can be specified by a context-free grammar. However, there are context-
free languages which cannot be accepted by a deterministic pushdown machine.
First consider the language, Pc, of palindromes over the alphabet {0,1} with
centermarker, c. Pc = wcwr, where w is any string of 0’s and 1’s, and wr is w
reversed. A grammar for Pc is shown below:
S → 0S0
S → 1S1
S → c

Some examples of strings in this language are: c, 0c0, 110c011, 111c111.
The student should verify that there is a deterministic pushdown machine

which will accept Pc. However, the language, P, of palindromes over the alpha-
bet {0,1} without centermarker cannot be accepted by a deterministic pushdown
machine. Such a machine would push symbols on the stack as they are input,
but would never know when to start popping those symbols off the stack; i.e.,
without a centermarker it never knows for sure when it is processing the mirror
image of the initial portion of the input string. For this language a nondetermin-
istic pushdown machine, which is one that can pursue several different courses
of action, would be needed. Nondeterministic machines are beyond the scope
of this text. A grammar for P is shown below:

1. S → 0S0
2. S → 1S1
3. S → 0
4. S → 1
5. S → ǫ

The subclass of context-free languages which can be accepted by a deter-
ministic pushdown machine are called deterministic context-free languages.
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3.0.6 Exercises

1. Show three different derivations using each of the following grammars,
with starting nonterminal S.

(a)

1. S → a S
2. S → b A
3. A → b S
4. A → c

(b)

1. S → a B c
2. B → A B
3. A → B A
4. A → a
5. B → ǫ

(c)

1. S → a S B c
2. a S A → a S b b
3. B c → A c
4. S b → b
5. A → a

(d)

1. S → a b
2. a → a A b B
3. A b B → ǫ

2. Classify the grammars of the previous problem according to Chomsky’s
definitions (give the most restricted classification applicable).

3. Show an example of a grammar rule which is:

(a) Right Linear

(b) Context-Free, but not Right Linear

(c) Context-Sensitive, but not Context-Free

(d) Unrestricted, but not Context-Sensitive

4. For each of the given input strings show a derivation tree using the fol-
lowing grammar.
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1. S → S a A
2. S → A
3. A → A b B
4. A → B
5. B → c S d
6. B → e
7. B → f

(a) eae (b) ebe (c) eaebe (d) ceaedbe (e) cebedaceaed

5. Show a left-most derivation for each of the following strings, using gram-
mar G4 of section 3.0.3.

(a) var + const (b) var + var * var (c) (var) (d) ( var + var ) *
var

6. Show derivation trees which correspond to each of your solutions to the
previous problem.

7. Some of the following grammars may be ambiguous; for each ambiguous
grammar, show two different derivation trees for the same input string:

(a)

1. S → a S b
2. S → A A
3. A → c
4. A → S

(b)

1. S → A a A
2. S → A b A
3. A → c
4. A → z

(c)

1. S → a S b S
2. S → a S
3. S → c

(d)

1. S → a S b c
2. S → A B
3. A → a
4. B → b
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8. Show a pushdown machine that will accept each of the following languages:
(a) {anbm}m > n > 0
(b) a ∗ (a+ b)c∗
(c) {anbncmdm}m,n ≥ 0
(d) {anbmcmdn}m,n > 0
(e) {Nic(Ni+1)

r}
- where Ni is a binary representation of the integer i, and (Ni)

r is Ni

written right to left (reversed). Examples:

i A string which should be accepted
19 10011c00101
19 10011c001010
15 1111c00001
15 1111c0000100

Hint: Use the first state to push Ni onto the stack until the c is read. Then
use another state to pop the stack as long as the input is the complement
of the stack symbol, until the top stack symbol and the input symbol are
equal. Then use a third state to ensure that the remaining input symbols
match the symbols on the stack. A fourth state can be used to allow for
leading (actaully, trailing) zeros after the c.

9. Show the output and the sequence of stacks for the machine of Figure 3.8
for each of the following input strings:

(a) a+ a ∗ a ←֓
(b) (a+ a) ∗ a ←֓
(c) (a) ←֓
(d) ((a)) ←֓

10. Show a grammar and an extended pushdown machine for the language of
prefix expressions involving addition and multiplication. Use the terminal
symbol a to represent a variable or constant. Example: *+aa*aa

11. Show a pushdown machine to accept palindromes over {0,1} with center-
marker c. This is the language, Pc, referred to in section 3.0.5.

12. Show a grammar for the language of valid regular expressions (as defined in
section 2.0) over the alphabet {0,1}. You may assume that concatenation
is always represented by a raised dot. An example of a string in this
language would be:
(0 + 1 · 1) ∗ ·0
An example of a string not in this language would be:
((0 + +1)
Hint: Think about grammars for arithmetic expressions.
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var

Factor

Term

Expr +

var

Factor

Term *

var

Factor

Term

Expr

Figure 3.9: A derivation tree for var + var * var using grammar G5

3.1 Ambiguities in Programming Languages

Ambiguities in grammars for programming languages should be avoided. One
way to resolve an ambiguity is to rewrite the grammar of the language so as to
be unambiguous. For example, the grammar G4 in section 3.0.3 is a grammar
for simple arithmetic expressions involving only addition and multiplication. As
we observed, it is an ambiguous grammar because there exists an input string
for which we can find more than one derivation tree. This ambiguity can be
eliminated by writing an equivalent grammar which is not ambiguous:

G5:
1. Expr → Expr + Term
2. Expr → Term
3. Term → Term * Factor
4. Term → Factor
5. Factor → ( Expr )
6. Factor → var
7. Factor → const

A derivation tree for the input string var + var * var is shown, in Fig-
ure 3.9. The student should verify that there is no other derivation tree for
this input string, and that the grammar is not ambiguous. Also note that in
any derivation tree using this grammar, subtrees correspond to subexpressions,
according to the usual precedence rules. The derivation tree in Figure 3.9 in-
dicates that the multiplication takes precedence over the addition. The left
associativity rule would also be observed in a derivation tree for var + var +

var.
Another example of ambiguity in programming languages is the conditional

statement as defined by grammar G6:
G6:

1. Stmt → IfStmt
2. IfStmt → if ( BoolExpr ) Stmt
3. IfStmt → if ( BoolExpr ) Stmt else Stmt

Think of grammar G6 as part of a larger grammar in which the nonterminal
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if ( Expr )

if ( Expr ) Stmt

IfStmt

Stmt else Stmt

IfStmt

Stmt

if ( Expr )

if ( Expr ) Stmt else Stmt

IfStmt

Stmt

IfStmt

Stmt

Figure 3.10: Two different derivation trees for the string if ( Expr ) if (

Expr ) Stmt else Stmt

Stmt is completely defined. For the present example we will show derivation
trees in which some of the leaves are left as nonterminals. Two different deriva-
tion trees for the input string if (BoolExpr) if (BoolExpr) Stmt else Stmt are
shown in Figure 3.10. In this grammar, a BoolExpr is any expression which
results in a boolean (true/false) value. A Stmt is any statement, including if
statements. This ambiguity is normally resolved by informing the programmer
that elses always are associated with the closest previous unmatched ifs. Thus,
the second derivation tree in Figure 3.10 corresponds to the correct interpreta-
tion. The grammar G6 can be rewritten with an equivalent grammar which is
not ambiguous:

G7:
1. Stmt → IfStmt
2. IfStmt → Matched
3. IfStmt → Unmatched
4. Matched → if ( BoolExpr ) Matched else Matched
5. Matched → OtherStmt
6. Unmatched → if ( BoolExpr ) Stmt
7. Unmatched → if ( BoolExpr ) Matched else Unmatched
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if ( Expr )

if ( Expr )

OtherStmt

Matched else

OtherStmt

Matched

Matched

IfStmt

Stmt

Unmatched

IfStmt

Stmt

Figure 3.11: A derivation tree for the string if ( Expr ) if ( Expr ) Stmt

else Stmt using grammar G7

This grammar differentiates between the two different kinds of if state-
ments, those with a matching else (Matched) and those without a matching
else (Unmatched). The nonterminal OtherStmt would be defined with rules
for statements other than if statements (while, assignment, for, ...). A deriva-
tion tree for the string if ( BoolExpr ) if ( BoolExpr ) OtherStmt else

OtherStmt is shown in Figure 3.11.

3.1.1 Exercises

1. Show derivation trees for each of the following input strings using grammar
G5.

(a) var ∗ var

(b) (var ∗ var) + var

(c) (var)

(d) var ∗ var ∗ var

2. Extend grammar G5 to include subtraction and division so that subtrees
of any derivation tree correspond to subexpressions.

3. Rewrite your grammar from the previous problem to include an exponen-
tiation operator, ^, such that x^y is xy. Again, make sure that subtrees
in a derivation tree correspond to subexpressions. Be careful, as expo-
nentiation is usually defined to take precedence over multiplication and
associate to the right:

2*3^2 = 18 and 2^2^3 = 256
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4. Two grammars are said to be isomorphic if there is a one-to-one corre-
spondence between the two grammars for every symbol of every rule. For
example, the following two grammars are seen to be isomorphic, simply
by making the following substitutions: substitute B for A, x for a, and y
for b.

S → aAb S → xBy
A→ bAa B → yBx
A→ a B → x

Which grammar in section 3.0 is isomorphic to the grammar of Exercise
4 in section 3.1?

5. How many different derivation trees are there for each of the following if

statements using grammar G6?

(a) if ( BoolExpr ) Stmt

(b) if ( BoolExpr ) Stmt else if ( BoolExpr ) Stmt

(c) if ( BoolExpr ) if ( BoolExpr ) Stmt else Stmt else Stmt

(d) if ( BoolExpr ) if ( BoolExpr ) if ( BoolExpr ) Stmt else Stmt

6. In the original C language it is possible to use assignment operators: var

=+ expr means var = var + expr and var =- expr means var =

var - expr. In later versions of C, C++, and Java the operator is placed
before the equal sign:

var += expr and var -= expr.

Why was this change made?

3.2 The Parsing Problem

The student may recall, from high school days, the problem of diagramming En-
glish sentences. You would put words together into groups and assign syntactic
types to them, such as noun phrase, predicate, and prepositional phrase. An
example of a diagrammed English sentence is shown in Figure 3.12. The pro-
cess of diagramming an English sentence corresponds to the problem a compiler
must solve in the syntax analysis phase of compilation.

The syntax analysis phase of a compiler must be able to solve the parsing
problem for the programming language being compiled: Given a grammar, G,
and a string of input symbols, decide whether the string is in L(G); also, deter-
mine the structure of the input string. The solution to the parsing problem will
be ‘yes’ or ‘no’, and, if ‘yes’, some description of the input string’s structure,
such as a derivation tree.
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The boy hugged the dog of a close neighbor

Article Noun Verb Article Noun Preposition Article Adjective Noun

Article Noun Verb Article Noun Preposition Article

Adjective Noun

NounPhrase Verb NounPhrase Preposition Article NounPhrase

Subject Verb NounPhrase Preposition NounPhrase

Subject Verb NounPhrase PrepositionalPhrase

Subject Verb DirectObject

Subject Predicate

Sentence

Figure 3.12: Diagram of an English sentence

A parsing algorithm is one which solves the parsing problem for a particular
class of grammars. A good parsing algorithm will be applicable to a large class
of grammars and will accommodate the kinds of rewriting rules normally found
in grammars for programming languages. For context-free grammars, there are
two kinds of parsing algorithms: bottom up and top down. These terms refer
to the sequence in which the derivation tree of a correct input string is built. A
parsing algorithm is needed in the syntax analysis phase of a compiler.

There are parsing algorithms which can be applied to any context-free gram-
mar, employing a complete search strategy to find a parse of the input string.
These algorithms are generally considered unacceptable since they are too slow;
they cannot run in polynomial time (see Aho et. al. [1], for example).

3.3 Summary

This chapter on syntax analysis serves as an introduction to the chapters on
parsing (chapters 4 and 5). In order to understand what is meant by parsing and
how to use parsing algorithms, we first introduce some theoretic and linguistic
concepts and definitions.

We define grammar as a finite list of rewriting rules involving terminal and
nonterminal symbols, and we classify grammars in a hierarchy according to com-
plexity. As we impose more restrictions on the rewriting rules of a grammar, we
arrive at grammars for less complex languages. The four classifications of gram-
mars (and languages) are (0) unrestricted, (1) context-sensitive, (2) context-free,
and (3) right linear. The context-free grammars will be most useful in the syn-
tax analysis phase of the compiler, since they are used to specify programming
languages.

We define derivations and derivation trees for context-free grammars, which
show the structure of a derived string. We also define ambiguous grammars as
those which permit two different derivation trees for the same input string.

Pushdown machines are defined as machines having an infinite stack and are
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shown to be the class of machines which corresponds to a subclass of context-free
languages. We also define pushdown translators as pushdown machines with an
output function, as this capability will be needed in compilers.

We take a careful look at ambiguities in programming languages, and see
ways in which these ambiguities can be resolved. In particular, we look at
grammars for simple arithmetic expressions and if-else statements.

Finally, we define the parsing problem: given a grammar and a string of
input symbols, determine whether the string belongs to the language of the
grammar, and, if so, determine its structure. We show that this problem cor-
responds exactly to the problem of diagramming an English sentence. The
two major classifications of parsing algorithms are top-down, and bottom-up,
corresponding to the sequence in which a derivation tree is built or traversed.



Chapter 4

Top Down Parsing

The parsing problem was defined in section 3.2 as follows: given a grammar and
an input string, determine whether the string is in the language of the grammar,
and, if so, determine its structure. Parsing algorithms are usually classified as
either top down or bottom up, which refers to the sequence in which a derivation
tree is built or traversed; in this chapter we consider only top down algorithms.

In a top down parsing algorithm, grammar rules are applied in a sequence
which corresponds to a general top down direction in the derivation tree. For
example, consider the grammar:

G8:

1. S → a S b
2. S → b A c
3. A → b S
4. A → a

We show a derivation tree for the input string abbbaccb in Figure 4.1. A
parsing algorithm will read one input symbol at a time and try to decide, using
the grammar, whether the input string can be derived. A top down algorithm
will begin with the starting nonterminal and try to decide which rule of the
grammar should be applied. In the example of Figure 4.1, the algorithm is able
to make this decision by examining a single input symbol and comparing it with
the first symbol on the right side of the rules. Figure 4.2 shows the sequence
of events, as input symbols are read, in which the numbers in circles indicate
which grammar rules are being applied, and the underscored symbols are the
ones which have been read by the parser. Careful study of Figures 4.1 and 4.2
reveals that this sequence of events corresponds to a top down construction of
the derivation tree.

In this chapter, we describe some top down parsing algorithms and, in addi-
tion, we show how they can be used to generate output in the form of atoms or
syntax trees. This is known as syntax directed translation. However, we need to
begin by describing the subclass of context-free grammars which can be parsed

93
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a

b

b

b

a

A c

S

A c

S b

S

Figure 4.1: A derivation tree for abbbaccb using grammar G8

S ⇒ aSb⇒ abAcb⇒ abbScb⇒ abbbAccb⇒ abbbaccb

1 2 3 2 4

Figure 4.2: Sequence of events in a top down parse of the string abbbaccb using
grammar G8

top down. In order to do this we begin with some preliminary definitions from
discrete mathematics.

4.0 Relations and Closure

Whether working with top down or bottom up parsing algorithms, we will always
be looking for ways to automate the process of producing a parser from the
grammar for the source language. This will require, in most cases, the use of
mathematics involving sets and relations. A relation is a set of ordered pairs.
Each pair may be listed in parentheses and separated by commas, as in the
following example:

R1:
(a,b)
(c,d)
(b,a)
(b,c)
(c,c)

Note that (a,b) and (b,a) are not the same. Sometimes the name of a rela-
tion is used to list the elements of the relation:
4 < 9
5 < 22
2 < 3
−3 < 0

If R is a relation, then the reflexive transitive closure of R is designated R*;
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A❥ B❥ C❥
a❥ -

Figure 4.3: Transitive (top) and reflexive (bottom) aspects of a relation

it is a relation made up of the same elements of R with the following properties:

1. All pairs of R are also in R*.

2. If (a,b) and (b,c) are in R*, then (a,c) is in R* (Transitive).

3. If a is in one of the pairs of R, then (a,a) is in R* (Reflexive).

A diagram using an arrow to represent the relation can be used to show
what we mean by transitive and reflexive properties and is shown in Figure 4.3.
In rule 2 for transitivity note that we are searching the pairs of R*, not R. This
means that as additional pairs are added to the closure for transitivity, those
new pairs must also be checked to see whether they generate new pairs.

Sample Problem 4.0.1

Show R1* the reflexive transitive closure of the relation R1.

Solution:

R1*:

(a,b)

(c,d)

(b,a) (from R1)

(b,c)

(c,c)

(a,c)
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(b,d) (transitive)

(a,d)

(a,a)

(b,b) (reflexive)

(d,d)

Note in Sample Problem 4.0.1 that we computed the transitive entries before
the reflexive entries. The pairs can be listed in any order, but reflexive entries
can never be used to derive new transitive pairs, consequently the reflexive pairs
were listed last.

4.0.1 Exercises

1. Show the reflexive transitive closure of each of the following relations:

(a) (a,b) (b) (a,a) (c) (a,b)

(a,d) (a,b) (c,d)

(b,c) (b,b) (b,c)

(d,a)

2. The mathematical relation less than is denoted by the symbol <. Some of
the elements of this relation are: (4,5) (0,16) (-4,1) (1.001,1.002). What
do we normally call the relation which is the reflexive transitive closure of
less than ?

3. Write a program in Java or C++ to read in from the keyboard, ordered
pairs (of strings, with a maximum of eight characters per string) repre-
senting a relation, and print out the reflexive transitive closure of that
relation in the form of ordered pairs. You may assume that there will be,
at most, 100 ordered pairs in the given relation, involving, at most, 100
different symbols.
(Hint: Form a boolean matrix which indicates whether each symbol is
related to each symbol).
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4.1 Simple Grammars

At this point, we wish to show how top down parsers can be constructed for
a given grammar. We begin by restricting the form of context-free grammar
rules so that it will be very easy to construct a parser for the grammar. These
gammars will not be very useful, but will serve as an appropriate introduction
to top down parsing.

A grammar is a simple grammar if every rule is of the form:
A→ aα
(where A represents any nonterminal, a represents any terminal, and α repre-

sents any string of terminals and nonterminals), and every pair of rules defining
the same nonterminal begin with different terminals on the right side of the
arrow. For example, the grammar G9 below is simple, but the grammar G10
is not simple because it contains an epsilon rule and the grammar G11 is not
simple because two rules defining S begin with the same terminal.

G9: G10: G11:
S → aSb S → aSb S → aSb
S → b S → ǫ S → a

A language which can be specified by a simple grammar is said to be a simple
language. Simple languages will not be very useful in compiler design, but they
serve as a good way of introducing the class of languages which can be parsed
top down. The parsing algorithm must decide which rule of the grammar is to
be applied as a string is parsed. The set of input symbols (i.e. terminal symbols)
which imply the application of a grammar rule is called the selection set of that
rule. For simple grammars, the selection set of each rule always contains exactly
one terminal symbol - the one beginning the right hand side. In grammar G9,
the selection set of the first rule is {a} and the selection set of the second rule is
{b}. In top down parsing in general, rules defining the same nonterminal must
have disjoint (non-intersecting) selection sets, so that it is always possible to
decide which grammar rule is to be applied.

For example, consider grammar G12 below:
G12:

1. S → a b S d
2. S → b a S d
3. S → d

Figure 4.4 illustrates the construction of a derivation tree for the input string
abbaddd, using grammar G12. The parser must decide which of the three rules
to apply as input symbols are read. In Figure 4.4 the underscored input symbol
is the one which determines which of the three rules is to be applied, and is thus
used to guide the parser as it attempts to build a derivation tree. The input
symbols which direct the parser to use a particular rule are the members of the
selection set for that rule. In the case of simple grammars, there is exactly one
symbol in the selection set for each rule, but for other context-free grammars,
there could be several input symbols in the selection set.
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a b S d

S
rule 1

a ⇒

a b

b a S d

S d

S

rule 2

abb ⇒

a b

b a

d

S d

S d

S

rule 3

abbad ⇒

Figure 4.4: Using the input symbol to guide the parsing of the string abbaddd

4.1.1 Parsing Simple Languages with Pushdown Machines

In this section, we show that it is always possible to construct a one-state
pushdown machine to parse the language of a simple grammar. Moreover, the
construction of the machine follows directly from the grammar; i.e., it can be
done mechanically. Consider the simple grammar G13 below:

G13:
1. S → aSB
2. S → b
3. B → a
4. B → bBa

We now wish to construct an extended pushdown machine to parse input
strings consisting of a’s and b’s, according to the rules of this grammar. The
strategy we use is to begin with a stack containing a bottom marker (▽) and
the starting nonterminal, S. As the input string is being parsed, the stack will
always correspond to the portion of the input string which has not been read.
As each input symbol is read, the machine will attempt to apply one of the
four rules in the grammar. If the top stack symbol is S, the machine will apply
either rule 1 or 2 (since they define an S); whereas if the top stack symbol is
B, the machine will apply either rule 3 or rule 4 (since they define a B). The
current input symbol is used to determine which of the two rules to apply by
comparing it with the selection sets (this is why we impose the restriction that



4.1. SIMPLE GRAMMARS 99

a b ↵

Rep (Bsa) Rep (b) Reject

S Retain Retain

Rep (a) Rep (aBb) Reject

B Retain Retain

pop Reject Reject

a Advance S

Reject pop Reject ∇

b Advance

∇ Reject Reject Accept Initial

Stack

Figure 4.5: A pushdown machine for grammar G13

a

a S S b b a N

S z B z B z B z B z a z

, , , , , , , Accept

Figure 4.6: Sequence of stacks for machine of Figure 4.5 for input aba

rules defining the same nonterminal have disjoint selection sets).

Once we have decided which rule is to be entered in each cell of the pushdown
machine table, it is applied by replacing the top stack symbol with the symbols
on the right side of the rule in reverse order, and retaining the input pointer.
This means that we will be pushing terminal symbols onto the stack in addition
to nonterminals. When the top stack symbol is a terminal, all we need to do is
ascertain that the current input symbol matches that stack symbol. If this is
the case, simply pop the stack and advance the input pointer. Otherwise, the
input string is to be rejected. When the end of the input string is encountered,
the stack should be empty (except for ▽) in order for the string to be accepted.
The extended pushdown machine for grammar G13 is shown in Figure 4.5. The
sequence of stack configurations produced by this machine for the input aba is
shown in Figure 4.6.

In general, given a simple grammar, we can always construct a one state
extended pushdown machine which will parse any input string. The construction
of the machine could be done automatically:

1. Build a table with each column labeled by a terminal symbol (and end-
marker →֒) and each row labeled by a nonterminal or terminal symbol (and
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bottom marker ▽).
2. For each grammar rule of the form A → aα, fill in the cell in row A

and column a with: REP (ara), retain, where ar represents a reversed (here, a
represents a terminal, and α represents a string of terminals and nonterminals).

3. Fill in the cell in row a and column a with pop, advance, for each terminal
symbol a.

4. Fill in the cell in row ▽ , and column ←֓ with Accept.
5. Fill in all other cells with Reject.
6. Initialize the stack with ▽, and the starting nonterminal.
This means that we could write a program which would accept, as input,

any simple grammar and produce, as output, a pushdown machine which will
accept any string in the language of that grammar and reject any string not in
the language of that grammar. There is software which is able to do this for a
grammar for a high level programming language; i.e., which is able to generate a
parser for a compiler. Software which generates a compiler automatically from
specifications of a programming language is called a compiler-compiler. We will
study a popular compiler-compiler called SableCC in section 5.3.

4.1.2 Recursive Descent Parsers for Simple Grammars

A second way of implementing a parser for simple grammars is to use a method-
ology known as recursive descent, in which the parser is written using a tradi-
tional programming language, such as Java or C++. A method is written for
each nonterminal in the grammar. The purpose of this method is to scan a por-
tion of the input string until an example of that nonterminal has been read. By
an example of a nontermninal, we mean a string of terminals or input symbols
which can be derived from that nonterminal. This is done by using the first
terminal symbol in each rule to decide which rule to apply. The method then
handles each succeeding symbol in the rule; it handles nonterminals by calling
the corresponding methods, and it handles terminals by reading another input
symbol. For example, a recursive descent parser for grammar G13 is shown
below:

class RDP // Recursive Descent Parser

{

char inp;

public static void main (String[] args) throws IOException

{ InputStreamReader stdin = new InputStreamReader

(System.in);

RDP rdp = new RDP();

rdp.parse();

}

void parse ()

{ inp = getInp();
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S (); // Call start nonterminal

if (inp==’N’) accept(); // end of string marker

else reject();

}

void S ()

{ if (inp==’a’) // apply rule 1

{ inp = getInp();

S ();

B ();

} // end rule 1

else if (inp==’b’) inp = getInp(); // apply rule 2

else reject();

}

void B ()

{ if (inp==’a’) inp = getInp(); // rule 3

else if (inp==’b’) // apply rule 4

{ inp = getInp();

B();

if (inp==’a’) inp = getInp();

else reject();

} // end rule 4

else reject();

}

void accept() // Accept the input

{ System.out.println ("accept"); }

void reject() // Reject the input

{ System.out.println ("reject");

System.exit(0); // terminate parser

}

char getInp()

{ try

{ return (char) System.in.read(); }

catch (IOException ioe)

{ System.out.println ("IO error " + ioe); }

return ’#’; // must return a char

}

}

Note that the main method (parse) reads the first input character before
calling the method for nonterminal S (the starting nonterminal). Each method
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assumes that the initial input symbol in the example it is looking for has been
read before that method has been called. It then uses the selection set to deter-
mine which of the grammar rules defining that nonterminal should be applied.
The method S calls itself (because the nonterminal S is defined in terms of it-
self), hence the name recursive descent. When control is returned to the parse
method, it must ensure that the entire input string has been read before accept-
ing it. The methods accept() and reject() simply indicate whether or not the
input string is in the language of the grammar. The method getInp() is used
to obtain one character from the standard input file (keyboard). In subsequent
examples, we omit the main, accept, reject, and getInp methods to focus atten-
tion on the concepts of recursive descent parsing. The student should perform
careful hand simulations of this program for various input strings, to understand
it fully.

Sample Problem 4.1.1

Show a one state pushdown machine and a recursive descent
parser (show methods S() and A() only) for the following gram-
mar:
1. S → 0S1A
2. S → 10A
3. A→ 0S0
4. A→ 1

Solution:

This grammar is simple because all rules begin with a terminal
- rules 1 and 2 which define S, begin with different terminals, and
rules 3 and 4 which define A, begin with different terminals.
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The recursive descent parser is shown below:

void S()

{ if (inp==’0’) // apply rule 1

{ getInp();

S();

if (inp==’1’) getInp();

else Reject();

A();

} // end rule 1

else if (inp==’1’) // apply rule 2

{ getInpu();

if (inp==’0’) getInp();

else reject();

A();

} // end rule 2

else reject();

}

void A()

{ if (inp==’0’) // apply rule 3

{ getInp();

S();

if (inp==’0’) getInp();

else reject();

} // end rule 3

else if (inp==’1’) getInp() // apply rule 4

else reject();

}
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4.1.3 Exercises

1. Determine which of the following grammars are simple. For those which
are simple, show an extended one-state pushdown machine to accept the
language of that grammar.

(a)

1. S → a S b
2. S → b

(b)

1. Expr → Expr + Term
2. Expr → Term
3. Term → var
4. Term → ( Expr )

(c)

1. S → a A b B
2. A → b A
3. A → a
4. B → b A

(d)

1. S → a A b B
2. A → b A
3. A → b
4. B → b A

(e)

1. S → a A b B
2. A → b A
3. A → ǫ
4. B → b A

2. Show the sequence of stacks for the pushdown machine of Figure 4.5 for
each of the following input strings:

(a) aba←֓

(b) abbaa←֓

(c) aababaa←֓

3. Show a recursive descent parser for each simple grammar of Problem 1,
above.
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4.2 Quasi-Simple Grammars

We now extend the class of grammars which can be parsed top down by per-
mitting e rules in the grammar. A quasi-simple grammar is a grammar which
obeys the restriction of simple grammars, but which may also contain rules of
the form:

N → ǫ

(where N represents any nonterminal) as long as all rules defining the same
nonterminal have disjoint selection sets. For example, the following is a quasi-
simple grammar:

G14:
1. S → a A S
2. S → b
3. A → c A S
4. A → ǫ

In order to do a top down parse for this grammar, we will again have to find
the selection set for each rule. In order to find the selection set for ǫ rules (such
as rule 4) we first need to define some terms. The follow set of a nonterminal
A, designated Fol(A), is the set of all terminals (or endmarker ←֓ ) which can
immediately follow an A in an intermediate form derived from S ←֓ , where S is
the starting nonterminal. For grammar G14, above, the follow set of S is {a,b,
←֓} and the follow set of A is {a,b}, as shown by the following derivations:

S ←֓ ⇒ aAS ←֓⇒ acASS ←֓⇒ acASaAS ←֓

⇒ acASb ←֓

Fol(S) = {a,b,←֓}

S ←֓⇒ aAS ←֓⇒ aAaAS ←֓

⇒ aAb ←֓

Fol(A) = {a,b}

For the present, we rely on the student’s ingenuity to find all elements of the
follow set. In a later section, we will present an algorithm for finding follow sets.
The selection set for an ǫ rule is simply the follow set of the nonterminal on the
left side of the arrow. For example, in grammar G14, above, the selection set
of rule 4 is Sel(4) = Fol(A) = {a,b}. We use the follow set because these are
the terminals which could be the current input symbol when, for instance, an
example of an A in recursive descent is being sought.

To understand selection sets for quasi-simple grammars, consider the case
where the parser for grammar G14 is attempting to build a derivation tree for
the input string acbb. Once again, it is the selection set of each rule that guides
the parser to apply that rule, as illustrated in Figure 4.7. If the parser is trying
to decide how to rewrite an A, it will choose rule 3 if the input symbol is a c,
but it will choose rule 4 if the input symbol is either an a or a b.
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rule 1
a ⇒ a A S

S rule 3
ac ⇒

a

c A S

A S

S

rule 4
acb ⇒

a

c

ǫ

A S

A S

S

rule 2
acb ⇒

a

c

ǫ

A

b

S

A S

S

rule 2
acbb ⇒

a

c

ǫ

A

b

S

A

b

S

S

Figure 4.7: Construction of a Parse Tree for acbb using selection sets
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a b c ↵

Rep (SAa) Rep (b) Reject Reject

S Retain Retain

Pop Pop Rep (SAc) Reject

A Retain Retain Retain

Pop Reject Reject Reject

a Advance S

Reject Pop Reject Reject ∇

b Advance

Reject Reject Pop Reject Initial

c Advance Stack

Reject Reject Reject Accept

∇

Figure 4.8: A pushdown machine for grammar G14

4.2.1 Pushdown Machines for Quasi-Simple Grammars

To build a pushdown machine for a quasi-simple grammar, we need to add only
one step to the algorithm given in Section 4.1.1. We need to apply an ǫ rule by
simply popping the nonterminal off the stack and retaining the input pointer.
We do this only when the input symbol is in the follow set of the nonterminal
defined in the ǫ rule. We would add the following step to the algorithm between
steps 4 and 5:

4.5 For each ǫ rule in the grammar, fill in cells of the row corresponding
to the nonterminal on the left side of the arrow, but only in those columns
corresponding to elements of the follow set of the nonterminal. Fill in these
cells with Pop, Retain. This will cause the machine to apply an ǫ rule by
popping the nonterminal off the stack without reading any input symbols.

For example, the pushdown machine for grammar G14 is shown in Figure 4.8
Note, in particular, that the entries in columns a and b for row A (Pop, Retain)
correspond to the e rule (rule 4).

4.2.2 Recursive Descent for Quasi-Simple Grammars

Recursive descent parsers for quasi-simple grammars are similar to those for
simple grammars. The only difference is that we need to check for all the input
symbols in the selection set of an ǫ rule. If any of these are the current input
symbol, we simply return to the calling method without reading any input. By
doing so, we are indicating that ǫ is an example of the nonterminal for which
we are trying to find an example. A recursive descent parser for grammar G14
is shown below:
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char inp;

void parse ()

{ inp = getInp();

S ();

if (inp==’N’) accept();

else reject();

}

void S ()

{ if (inp==’a’) // apply rule 1

{ inp = getInp();

A();

S();

}

// end rule 1

else if (inp==’b’) inp = getInp(); // apply rule 2

else reject();

}

void A ()

{ if (inp==’c’) // apply rule 3

{ inp = getInp();

A ();

S ();

}

// end rule 3

else if (inp==’a’ || inp==’b’) ; // apply rule 4

else reject();

}

Note that rule 4 is applied in method A() when the input symbol is a or
b. Rule 4 is applied by returning to the calling method without reading any
input characters. This is done by making use of the fact that Java permits null
statements (at the comment // apply rule 4). It is not surprising that a null
statement is used to process the null string.

4.2.3 A Final Remark on ǫ Rules

It is not strictly necessary to compute the selection set for ǫ rules in quasi-simple
grammars. In other words, there is no need to distinguish between Reject entries
and Pop, Retain entries in the row of the pushdown machine for an ǫ rule; they
can all be marked Pop, Retain. If the machine does a Pop, Retain when it
should Reject (i.e., it applies an ǫ rule when it really has no rule to apply), the
syntax error will always be detected subsequently in the parse. However, this
is often undesirable in compilers, because it is generally a good idea to detect
syntax errors as soon as possible so that a meaningful error message can be put
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out.

For example, in the pushdown machine of Figure 4.8, for the row labeled
A, we have filled in Pop, Retain under the input symbols a and b, but Reject
under the input symbol ←֓ ; the reason is that the selection set for the ǫ rule is
{a,b}. If we had not computed the selection set, we could have filled in all three
of these cells with Pop, Retain, and the machine would have produced the same
end result for any input.

Sample Problem 4.2.1

Find the selection sets for the following grammar. Is the gram-
mar quasi-simple? If so, show a pushdown machine and a recursive
descent parser (show methods S() and A() only) corresponding to
this grammar.

1. S → b A b
2. S → a
3. A → ǫ
4. A → a S a

Solution:

In order to find the selection set for rule 3, we need to find the fol-
low set of the nonterminal A. This is the set of terminals (including
←֓) which could follow an A in a derivation from S ←֓ .

S ←֓⇒ bAbS ←֓

The terminal b immediately follows an A in the derivation shown
above. We cannot find any other teminals that can follow an A in
a derivation from S ←֓ . There fore, FOL(A) = {b}. The selection
sets can now be listed: texttt Sel(1) = {b}

Sel(2) = {a}
Sel(3) = FOL(A) = {b}
Sel(4) = {a}

The grammar is quasi-simple because the rules defining an S have
disjoint selection sets and the rules defining an A have dijoint selec-
tion sets. The pushdown machine is shown below:
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a b ↵

Rep (a) Rep (bAb) Reject

S Retain Retain

Rep (aSa) Pop Reject

A Retain Retain

Pop Reject Reject

a Advance S

Reject Pop Reject ∇

b Advance

∇ Reject Reject Accept Initial

Stack

The recursive descent parser is shown below:

void S()

{ if (inp==’b’) // apply rule 1

{ getInp();

A();

if (inp==’b’) getInp();

else Reject();

} // end rule 1

else if (inp==’a’) getInp(); // apply rule 2

else reject();

}

void A()

{ if (inp==’b’) ; // apply rule 3

else if (inp==’a’) getInp() // apply rule 4

{ getInp();

S();

if (inp==’a’) getInp();

else reject();

} // end rule 4

else reject();

}

Note that rule 3 is implemented with a null statement. This
should not be surprising since rule 3 defines A as the null string.
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4.2.4 Exercises

1. Show the sequence of stacks for the pushdown machine of Figure 4.8 for
each of the following input strings:

(a) ab←֓

(b) acbb←֓

(c) aab←֓

2. Show a derivation tree for each of the input strings in Problem 1, using
grammar G14. Number the nodes of the tree to indicate the sequence in
which they were applied by the pushdown machine.

3. Given the following grammar:

1. S → a A b S
2. S → ǫ
3. A → a S b
4. A → ǫ

(a) Find the follow set for each nonterminal.

(b) Show an extended pushdown machine for the language of this gram-
mar.

(c) Show a recursive descent parser for this grammar.

4.3 LL(1) Grammars

We now generalize the class of grammars that can be parsed top down by al-
lowing rules of the form N → α where α is any string of terminals and nonter-
minals. However, the grammar must be such that any two rules defining the
same nonterminal must have disjoint selection sets. If it meets this condition,
the grammar is said to be LL(1), and we can construct a one-state pushdown
machine parser or a recursive descent parser for it. The name LL(1) is derived
from the fact that the parser finds a left-most derivation when scanning the
input from left to right if it can look ahead no more than one input symbol.
In this section we present an algorithm to find selection sets for an arbitrary
context-free grammar.

The algorithm for finding selection sets of any context-free grammar consists
of twelve steps and is shown below. Intuitively, the selection set for each rule in
the grammar is the set of terminals which the parser can expect to encounter
when applying that grammar rule. For example, in grammar G15, below, we
would expect the terminal symbol b to be in the selection set for rule 1, since:

S ⇒ ABc⇒ bABc
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In this discussion, the phrase any string always includes the null string,
unless otherwise stated. As each step is explained, we present the result of that
step when applied to the example, grammar G15.

G15:
1. S → ABc
2. A → bA
3. A → ǫ
4. B → c

Step 1. Find all nullable rules and nullable nonterminals:
Remove, temporarily, all rules containing a terminal. Allǫrules are nullable

rules. The nonterminal defined in a nullable rule is a nullable nonterminal. In
addition, all rules in the form

A→ BCD...
where B, C, D, ... are all nullable non-terminals, are nullable rules; the non-

terminals defined by these rules are also nullable non-terminals. In other words,
a nonterminal is nullable if ǫ can be derived from it, and a rule is nullable if ǫ
can be derived from its right side.

For grammar G15:
Nullable rules: rule 3
Nullable nonterminals: A

Step 2. Compute the relation Begins Directly With for each non-
terminal:

A BDW X if there is a rule A → αXβ such that α is a nullable string (a
string of nullable nonterminals). A represents a nonterminal and X represents a
terminal or nonterminal. β represents any string of terminals and nonterminals.

For G15:

S BDW A (from rule 1)

S BDW B (also from rule 1, because A is nullable)

A BDW b (from rule 2)

B BDW c (from rule 4)

Step 3. Compute the relation Begins With:
X BW Y if there is a string beginning with Y that can be derived from X.

BW is the reflexive transitive closure of BDW. In addition, BW should contain
pairs of the form a BW a for each terminal a in the grammar.

For G15:

S BW A

S BW B (from BDW)

A BW b

B BW c

S BW b (transitive)

S BW c
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S BW S

A BW A

B BW B (reflexive)

b BW b

c BW c

Step 4. Compute the set of terminals First(x) for each symbol x
in the grammar.

At this point, we can find the set of all terminals which can begin a sentential
form when starting with a given symbol of the grammar.

First(A) = set of all terminals b, such that A BW b for each nonterminal
A. First(t) = {t} for each terminal t.

For G15:

First(S) = {b,c}

First(A) = {b}

First(B) = {c}

First(b) = {b}

First(c) = {c}

Step 5. Compute First of right side of each rule:
We now compute the set of terminals which can begin a sentential form

derivable from the right side of each rule.

First (XYZ...) = First(X)

U First(Y) if X is nullable

U First(Z) if Y is also nullable

.

.

.

In other words, find the union of the First(x) sets for each symbol on the
right side of a rule, but stop when reaching a non-nullable symbol.

For G15:

1. First(ABc) = First(A) U First(B) = {b,c} (because A is nullable)

2. First(bA) = {b}

3. First(e) = {}

4. First(c) = {c}
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If the grammar contains no nullable rules, you may skip to step 12 at this
point.

Step 6. Compute the relation Is Followed Directly By :

B FDB X if there is a rule of the form

A→ αBβXγ

where β is a string of nullable nonterminals, α, γ are strings of symbols, X
is any symbol, and A and B are nonterminals.

For G15:

A FDB B (from rule 1)

B FDB c (from rule 1)

Note that if B were a nullable nonterminal we would also have A FDB c.

Step 7. Compute the relation Is Direct End Of :

X DEO A if there is a rule of the form:

A→ αXβ

where β is a string of nullable nonterminals, α is a string of symbols, and X
is a single grammar symbol.

For G15:

c DEO S (from rule 1)

A DEO A (from rule 2)

b DEO A (from rule 2, since A is nullable)

c DEO B (from rule 4)

Step 8. Compute the relation Is End Of :

X EO Y if there is a string derived from Y that ends with X. EO is the
reflexive transitive closure of DEO. In addition, EO should contain pairs of the
form N EO N for each nullable nonterminal, N, in the grammar.

For G15:

c EO S

A EO A (from DEO)

b EO A

c EO B

(no transitive entries)

c EO c

S EO S (reflexive)

b EO b

B EO B
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Step 9. Compute the relation Is Followed By :
W FB Z if there is a string derived from S ←֓ in which W is immediately

followed by Z.
If there are symbols X and Y such that

W EO X

X FDB Y

Y BW Z

then W FB Z

For G15:

A EO A A FDB B B BW B A FB B

B BW c A FB c

b EO A B BW B b FB B

B BW c b FB c

B EO B B FDB c c BW c B FB c

c EO B c BW c c FB c

Step 10. Extend the FB relation to include endmarker:
A FB ←֓ if A EO S where A represents any nonterminal and S represents

the starting nonterminal.
For G15:
S FB ←֓ because S EO S
There are now seven pairs in the FB relation for grammar G15.
Step 11. Compute the Follow Set for each nullable nonterminal:
The follow set of any nonterminal A is the set of all terminals, t, for which

A FB t.
Fol(A) = {t: A FB t}
To find selection sets, we need find follow sets for nullable nonterminals only.

For G15:
Fol(A) = {c} since A is the only nullable nonterminal and A FB c.
Step 12. Compute the Selection Set for each rule:
i. A→ α
if rule i is not a nullable rule, then Sel(i) = First(α)

if rule i is a nullable rule, then Sel(i) = First(α) U Fol(A)
For G15:

Sel(1) = First(ABc) = {b,c}
Sel(2) = First(bA) = {b}
Sel(3) = First(ǫ) U Fol(A) = {} U {c} = {c}
Sel(4) = First(c) = {c}
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1. Find nullable rules and nullable nonterminals.

2. Find Begins Directly With relation (BDW).

3. Find Begins With relation (BW).

4. Find First(x) for each symbol, x.

5. Find First(n) for the right side of each rule, n.

6. Find Followed Directly By relation (FDB).

7. Find Is Direct End Of relation (DEO).

8. Find Is End Of relation (EO).

9. Find Is Followed By relation (FB).

10. Extend FB to include endmarker.

11. Find Follow Set, Fol(A), for each nullable nonterminal, A.

12. Find Selection Set, Sel(n), for each rule, n.

Figure 4.9: Summary of algorithm to find selection sets of any context-free
grammar

Notice that since we are looking for the follow set of a nullable nonterminal
in step 12, we have actually done much more than necessary in step 9. In step
9 we need produce only those pairs of the form A FB t, where A is a nullable
nonterminal and t is a terminal.

The algorithm is summarized in Figure 4.9. A context-free grammar is
LL(1) if rules defining the same nonterminal always have disjoint selection sets.
Grammer G15 is LL(1) because rules 2 and 3 (defining the nonterminal A) have
disjoint selection sets (the selection sets for those rules have no terminal symbols
in common). Note that if there are no nullable rules in the grammar, we can
get the selection sets directly from step 5 – i.e., we can skip steps 6-11. A graph
showing the dependence of any step in this algorithm on the results of other
steps is shown in Figure 4.10. For example, this graph shows that the results of
steps 3,6, and 8 are needed for step 9.

4.3.1 Pushdown Machines for LL(1) Grammars

Once the selection sets have been found, the construction of the pushdown
machine is exactly as for quasi-simple grammars. For a rule in the grammar,
A→ a, fill in the cells in the row for nonterminal A and in the columns for the
selection set of that rule with Rep(ar), Retain, where ar represents the right
side of the rule reversed. For ǫ rules, fill in Pop, Retain in the columns for the
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1❥
2❥ 6❥ 7❥
3❥ 9❥ 8❥
4❥ 10❥
5❥ 11❥
12❥

Figure 4.10: Dependency graph for the steps in the algorithm for finding selec-
tion sets
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b c N

Rep (cBA) Rep (cBA) Reject

S Retain Retain

Rep (Ab) Pop Reject

A Retain Retain

Reject Rep (c) Reject

B Retain S

Pop Reject Reject ,

b Advance

Reject Pop Reject Initial

c Advance Stack

, Reject Reject Accept

Figure 4.11: A pushdown machine for grammar G15

selection set. For each terminal symbol, enter Pop, Advance in the cell in the
row and column labeled with that terminal. The cell in the row labeled ▽ and
the column labeled ←֓ should contain Accept. All other cells are Reject. The
pushdown machine for grammar G15 is shown in Figure 4.11.

4.3.2 Recursive Descent for LL(1) Grammars

Once the selection sets have been found, the construction of the recursive descent
parser is exactly as for quasi-simple grammars. When implementing each rule of
the grammar, check for the input symbols in the selection set for that grammar.
A recursive descent parser for grammar G15 is shown below:

void parse ()

{ getInp();

S ();

if (inp==’$\hookleftarrow$’) accept; else reject();

}

void S ()

{ if (inp==’b’ || inp==’c’) // apply rule 1

{ A ();

B ();

if (inp==’c’) getInp();

else reject();

} // end rule 1

else reject();

}
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void A ()

{ if (inp==’b’) // apply rule 2

{ getInp();

A ();

} // end rule 2

else if (inp==’c’) ; // apply rule 3

else reject();

}

void B ()

{ if (inp==’c’) getInp(); // apply rule 4

else reject();

}

Note that when processing rule 1, an input symbol is not read until a teminal
is encountered in the grammar rule (after checking for a or b, an input symbol
should not be read before calling procedure A).

Sample Problem 4.3.1

Show the sequence of stacks that occurs when the pushdown ma-
chine of Figure 4.11 parses the string bcc←֓

Solution:
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b

A A A

b B B B c B c

S → c → c → c → c → c →

∇ ∇ ∇ ∇ ∇ ∇

c ↵  

c → →  Accept

∇ ∇

4.3.3 Exercises

1. Given the following information, find the Followed By relation (FB) as
described in step 9 of the algorithm for finding selection sets:

A EO A A FDB D D BW b

A EO B B FDB a b BW b

B EO B a BW a

2. Find the selection sets of the following grammar and determine whether
it is LL(1).

1. S → ABD
2. A→ aA
3. A→ ǫ
4. B → bB
5. B → ǫ
6. D → dD
7. D → ǫ

3. Show a pushdown machine for the grammar of Problem 2.

4. Show a recursive descent parser for the grammar of Problem 2.

5. Step 3 of the algorithm for finding selection sets is to find the Begins With
relation by forming the reflexive transitive closure of the Begins Directly
With relation. Then add ’pairs of the form a BW a for each terminal a in
the grammar’; i.e., there could be terminals in the grammar which do not
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appear in the BDW relation. Find an example of a grammar in which the
selection sets will not be found correctly if you do not add these pairs to
the BW relation (hint: see step 9).

4.4 Parsing Arithmetic Expressions Top Down

Now that we understand how to determine whether a grammar can be parsed
down, and how to construct a top down parser, we can begin to address the
problem of building top down parsers for actual programming languages. One
of the most heavily studied aspects of parsing programming languages deals with
arithmetic expressions. Recall grammar G5 for arithmetic expressions involv-
ing only addition and multiplication, from Section 3.1. We wish to determine
whether this grammar is LL(1).

G5:
1. Expr → Expr + Term
2. Expr → Term
3. Term→ Term ∗ Factor
4. Term→ Factor
5. Factor → (Expr)
6. Factor → var

In order to determine whether this grammar is LL(1), we must first find the
selection set for each rule in the grammar. We do this by using the twelve step
algorithm given in Section 4.3.

1. Nullable rules: none

Nullable nonterminals: none

2. Expr BDW Expr

Expr BDW Term

Term BDW Term

Term BDW Factor

Factor BDW (

Factor BDW var

3. Expr BW Expr

Expr BW Term

Term BW Term

Term BW Factor

Factor BW (

Factor BW var

Factor BW Factor

( BW (

var BW var
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Expr BW Factor

Expr BW (

Expr BW var

Term BW (

Term BW var

* BW *

+ BW +

) BW )

4. First(Expr) = {(,var}

First(Term) = {(,var}

First(Factor) = {(,var}

5. 1. First(Expr + Term) = {(,var}

2. First(Term) = {(,var}

3. First(Term * Factor) = {(,var}

4. First(Factor) = {(,var}

5. First( ( Expr ) ) = {( }

6. First (var) = {var}

12. Sel(1) = {(,var}

Sel(2) = {(,var}

Sel(3) = {(,var}

Sel(4) = {(,var}

Sel(5) = {( }

Sel(6) = {var}

Since there are no nullable rules in the grammar, we can obtain the selection
sets directly from step 5. This grammar is not LL(1) because rules 1 and 2
define the same nonterminal, Expr, and their selection sets intersect. This is
also true for rules 3 and 4.

Incidentally, the fact that grammar G5 is not suitable for top down parsing
can be determined much more easily by inspection of the grammar. Rules 1 and
3 both have a property known as left recursion:
1. Expr → Expr + Term
3. Term→ Term ∗ Factor

They are in the form:
A→ Aa
Note that any rule in this form cannot be parsed top down. To see this,

consider the method for the nonterminal A in a recursive descent parser. The
first thing it would do would be to call itself, thus producing infinite recursion
with no base case (or ’escape hatch’ from the recursion). Any grammar with
left recursion cannot be LL(1).
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var

Factor

ǫ

Tlist

Term

+

var

Factor

*

var

Factor

ǫ

Tlist

Tlist

Term

ǫ

Elist

Elist

Expr

Figure 4.12: Derivation tree for the expression var+var*var using grammar
G16

The left recursion can be eliminated by rewriting the grammar with an equiv-
alent grammar that does not have left recursion. In general, the offending rule
might be in the form:
A→ Aα
A→ β

in which we assume that β is a string of terminals and nonterminals that
does not begin with an A. We can eliminate the left recursion by introducing a
new nonterminal, R, and rewriting the rules as:
A→ βR
R→ αR
R→ ǫ

A more detailed and complete explanation of left recursion elimination can
be found in Parsons [17].

This methodology is used to rewrite the grammar for simple arithmetic ex-
pressions in which the new nonterminals introduced are Elist and Tlist. An
equivalent grammar for arithmetic expressions involving only addition and mul-
tiplication, G16, is shown below. A derivation tree for the expression var+var*var
is shown in Figure 4.12.

G16:
1. Expr → Term Elist
2. Elist → + Term Elist
3. Elist → ǫ
4. Term → Factor Tlist
5. Tlist → * Factor Tlist
6. Tlist → ǫ
7. Factor → ( Expr )
8. Factor → var

Note in grammar G16 that an Expr is still the sum of one or more Terms
and a Term is still the product of one or more Factors, but the left recursion has



124 CHAPTER 4. TOP DOWN PARSING

been eliminated from the grammar. We will see later that this grammar also
defines the precedence of operators as desired. The student should construct
several derivation trees using grammar G16 in order to be convinced that it is
not ambiguous.

We now wish to determine whether this grammar is LL(1), using the algo-
rithm to find selection sets:

1. Nullable rules: 3,6

Nullable nonterminals: Elist, Tlist

2. Expr BDW Term

Elist BDW +

Term BDW Factor

Tlist BDW *

Factor BDW (

Factor BDW var

3. Expr BW Term

Elist BW +

Term BW Factor (from BDW)

Tlist BW *

Factor BW (

Factor BW var

Expr BW Factor

Term BW (

Term BW var (transitive)

Expr BW (

Expr BW var

Expr BW Expr

Term BW Term

Factor BW Factor

Elist BW Elist

Tlist BW Tlist (reflexive)

Factor BW Factor

+ BW +

* BW *

( BW (

var BW var

) BW )

4. First (Expr) = {(,var}

First (Elist) = {+}

First (Term) = {(,var}
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First (Tlist) = {*}

First (Factor) = {(,var}

5. 1. First(Term Elist) = {(,var}

2. First(+ Term Elist) = {+}

3. First(epsilon) = { }

4. First(Factor Tlist) = {(,var}

5. First(* Factor Tlist) = {*}

6. First(epsilon) = { }

7. First(( Expr )) = {( }

8. First(var) = {var}

6. Term FDB Elist

Factor FDB Tlist

Expr FDB )

7. Elist DEO Expr

Term DEO Expr

Elist DEO Elist

Term DEO Elist

Tlist DEO Term

Factor DEO Term

Tlist DEO Tlist

Factor DEO Tlist

) DEO Factor

var DEO Factor

8. Elist EO Expr

Term EO Expr

Elist EO Elist

Term EO Elist

Tlist EO Term

Factor EO Term (from DEO)

Tlist EO Tlist

Factor EO Tlist

) EO Factor

var EO Factor

Tlist EO Expr

Tlist EO Elist

Factor EO Expr

Factor EO Elist

) EO Term

) EO Tlist

) EO Expr (transitive)

) EO Elist
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var EO Term

var EO Tlist

var EO Expr

var EO Elist

Expr EO Expr

Term EO Term

Factor EO Factor

) EO )

var EO var (reflexive)

+ EO +

* EO *

( EO (

Elist EO Elist

Tlist EO Tlist

9. Tlist EO Term FDB Elist BW + Tlist FB +

BW Elist

Factor EO BW +

BW Elist

var EO BW +

BW Elist

Term EO BW +

BW Elist

) EO BW +

BW Elist

) EO Factor FDB Tlist BW *

BW Tlist

var EO BW *

BW Tlist

Factor EO BW *

BW Tlist

Elist EO Expr FDB ) BW ) Elist FB )

Tlist EO Expr Tlist FB )

10.
Elist FB ←֓
Term FB ←֓
Expr FB ←֓
Tlist FB ←֓
Factor FB ←֓
11.
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Fol (Elist) = {),←֓ }
Fol (Tlist) = {+,),←֓ }
12.

Sel(1) = First(Term Elist) = {(,var}
Sel(2) = First(+ Term Elist) = { +}
Sel(3) = Fol(Elist) = {),←֓}
Sel(4) = First(Factor Tlist) = {(,var}
Sel(5) = First(* Factor Tlist) = {*}
Sel(6) = Fol(Tlist) = {+,),←֓}
Sel(7) = First( ( Expr ) ) = {(}
Sel(8) = First(var) = {var}

Since all rules defining the same nonterminal (rules 2 and 3, rules 5 and 6,
rules 7 and 8) have disjoint selection sets, the grammar G16 is LL(1).

In step 9 we could have listed several more entries in the FB relation. For
example, we could have listed pairs such as var FB + and Tlist FB Elist.

These were not necessary, however; this is clear if one looks ahead to step 11,
where we construct the follow sets for nullable nonterminals. This means we
need to use only those pairs from step 9 which have a nullable nonterminal on
the left and a terminal on the right. Thus, we will not need var FB + because
the left member is not a nullable nonterminal, and we will not need Tlist FB

Elist because the right member is not a terminal.

Sample Problem 4.4.1

Show an extended pushdown machine and a recursive descent
parser for arithmetic expressions involving addition and multiplica-
tion using grammar G16.

Solution:

To build the pushdown machine we make use of the selection sets
shown avove. These tell us which columns of the machine are to be
filled in for each row. For example, since the selection set for rule 4 is
{(,var}, we fill the cells in the row labeled Term and columns labeled
( and var with information from rule 4: Rep (Tlist Factor). The
solution is shown below.
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+ * ( ) var N

Rep(Elist Rep(Elist

Expr Reject Reject Term) Reject Term) Reject

Retain Retain

Rep(Elist

Elist Term +) Reject Reject Pop Reject Pop

Retain Retain Retain

Rep(Tlist Rep(Tlist

Term Reject Reject Factor) Reject Factor) Reject

Retain Retain

Rep(Tlist

Tlist Pop Factor *) Reject Pop Reject Pop

Retain Retain Retain Retain

Rep( Rep(var)

Factor Reject Reject )Expr( ) Reject Reject

Retain Retain

+ Pop Reject Reject Reject Reject Reject

Advance

* Reject Pop Reject Reject Reject Reject

Advance

( Reject Reject Pop Reject Reject Reject

Advance

Expr

) Reject Reject Reject Pop Reject Reject ,

Advance

Initial

var Reject Reject Reject Reject Pop Reject Stack

Advance

, Reject Reject Reject Reject Reject Accept

We make use of the selection sets again in the recursive descent
parser. In each procedure the input symbols in the selection set tell
us which rule of the grammar to apply. Assume that a var and the
endmarker is each represented by an integer constant. The recursive
descent parser is shown below:

int inp;

final int var = 256;

final int endmarker = 257;

void Expr()

{ if (inp==’(’ || inp==var) // apply rule 1

{ Term();
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Elist();

} // end rule 1

else reject();

}

void Elist()

{ if (inp==’+’) // apply rule 2

{ getInp();

Term();

Elist();

} // end rule 2

else if (inp==’)’ || inp==endmarker)

; // apply rule 3, null statement

else reject();

}

void Term()

{ if (inp==’(’ || inp==var) // apply rule 4

{ Factor();

Tlist();

} // end rule 4

else reject();

}

void Tlist()

{ if (inp==’*’) // apply rule 5

{ getInp();

Factor();

Tlist();

} // end rule 5

else if (inp==’+’ || inp==’)’

|| inp==endmarker)

; // apply rule 6, null statement

else reject();

}

void Factor()

{ if (inp==’(’) // apply rule 7

{ getInp();

Expr();

if (inp==’)’) getInp();

else reject();

} // end rule 7

else if (inp==var) getInp(); // apply rule 8

else reject();

}
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4.4.1 Exercises

1. Show derivation trees for each of the following input strings, using gram-
mar G16.

(a) var + var

(b) var + var * var

(c) (var + var) * var

(d) ((var))

(e) var * var * var

2. We have shown that grammar G16 for simple arithmetic expressions is
LL(1), but grammar G5 is not LL(1). What are the advantages, if any, of
grammar G5 over grammar G16?

3. Suppose we permitted our parser to peek ahead n characters in the input
stream to determine which rule to apply. Would we then be able to use
grammar G5 to parse simple arithmetic expressions top down? In other
words, is grammar G5 LL(n)?

4. Find two null statements in the recursive descent parser of the sample
problem in this section. Which methods are they in and which grammar
rules do they represent?

5. Construct part of a recursive descent parser for the following portion of a
programming language:

1. Stmt→ if(Expr)Stmt
2. Stmt→ while(Expr)Stmt
3. Stmt→ {StmtList}
4. Stmt→ Expr;

Write the procedure for the nonterminal Stmt. Assume the selection set
for rule 4 is {(, identifier, number}.

6. (a) Show an LL(1) grammar for the language of regular expressions over
the alphabet {0,1}. Assume that concatenation is always designated
by a raised dot.
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(b) Show a derivation tree for the regular expression 1+0.1∗ (In the tree
it should be clear that 1∗ is a subexpression)

(c) Show the selection set for each rule in your grammar.

(d) Show a recursive descent parser corresponding to the grammar.

(e) Show a one state pushdown machine corresponding to the grammar.

7. Show how to eliminate the left recursion from each of the grammars shown
below:

(a) 1. A→ Abc
2. A→ ab

(b) 1. ParmList→ ParmList, Parm
2. ParmList→ Parm

8. A parameter list is a list of 0 or more parameters separated by commas;
a parameter list neither begins nor ends with a comma. Show an LL(1)
grammar for a parameter list. Assume that parameter has already been
defined.

4.5 Syntax-Directed Translation

Thus far we have explored top down parsing in a way that has been exclusively
concerned with syntax. In other words, the programs we have developed can
check only for syntax errors; they cannot produce output, and they do not
deal at all with semantics (the intent or meaning) of the source program. For
this purpose, we now introduce action symbols which are intended to give us
the capability of producing output and/or calling other methods while parsing
an input string. A grammar containing action symbols is called a translation
grammar. We will designate the action symbols in a grammar by enclosing them
in curly braces {}. The meaning of the action symbol, by default, is to produce
output: the action symbol itself.

To find the selection sets in a translation grammar, simply remove all the
action symbols. This results in what is called the underlying grammar. Note
that a rule of the form:

A→ {action}

is an epsilon rule in the underlying grammar. An example of a translation
grammar to translate infix expressions involving addition and multiplication to
postfix form is shown below:

G17:
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var [var]

Factor

ǫ

Tlist

Term

+

var [var]

Factor

*

var [var]

Factor [*]

ǫ

Tlist

Tlist

Term [+]

ǫ

Elist

Elist

Expr

Figure 4.13: A derivation tree for the expression var+var*var using grammar
G17

1. Expr → Term Elist
2. Elist → + Term {+} Elist
3. Elist → ǫ
4. Term → Factor Tlist
5. Tlist → * Factor {*} Tlist
6. Tlist → ǫ
7. Factor → ( Expr )
8. Factor → var {var}

The underlying grammar of grammar G17 is grammar G16 in Section 4.4. A
derivation tree for the expression var + var * var is shown in Figure 4.13. Note
that the action symbols are shown as well. Listing the leaves of the derivation
tree, the derived string is shown below:

var {var} + var {var} * var {var} {*} {+}

in which input symbols and action symbols are interspersed. Separating out
the action symbols gives the output defined by the translation grammar:

{var} {var} {var} {*} {+}

4.5.1 Implementing Translation Grammars with Pushdown
Translators

To implement a translation grammar with a pushdown machine, action symbols
should be treated as stack symbols and are pushed onto the stack in exactly
the same way as terminals and nonterminals occurring on the right side of a
grammar rule. In addition, each action symbol {A} representing output should
label a row of the pushdown machine table. Every column of that row should
contain the entry Out(A), Pop, Retain. A pushdown machine to parse and
translate infix expressions into postfix, according to the translation grammar
G17, is shown in Figure 4.14, in which all empty cells are assumed to be Reject.
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var + * ( )  

Rep(Elist Rep(Elist

Expr Term) Term)

Retain Retain

Rep(Elist

Elist {+}Term+) Pop Pop

Retain Retain Retain

Rep(Tlist Rep(Tlist

Term Factor) Factor)

Retain Retain

Rep(Tlist

Tlist Pop {*}Factor*) Pop Pop

Retain Retain Retain Retain

Rep( {var} Rep(

Factor var ) )Expr( )

Retain Retain

var Pop

Advance

+ Pop

Advance

* Pop

Advance

( Pop

Advance

Expr

) Pop ,

Advance

Pop Pop Pop Pop Pop Pop Initial

{var} Retain Retain Retain Retain Retain Retain Stack

Out (var) Out (var) Out (var) Out (var) Out (var) Out (var)

Pop Pop Pop Pop Pop Pop

{+} Retain Retain Retain Retain Retain Retain

Out (+) Out (+) Out (+) Out (+) Out (+) Out (+)

Pop Pop Pop Pop Pop Pop

{*} Retain Retain Retain Retain Retain Retain

Out (*) Out (*) Out (*) Out (*) Out (*) Out (*)

, Accept

Figure 4.14: An extended pushdown infix to postfix translator constructed from
grammar G17
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4.5.2 Implementing Translation Grammars with Recur-
sive Descent

To implement a translation grammar with a recursive descent translator, action
symbols should be handled as they are encountered in the right side of a gram-
mar rule. Normally this will mean simply writing out the action symbol, but it
could mean to call a method, depending on the purpose of the action symbol.
The student should be careful in grammars such as G18:

G18:
1. S → {print}aS
2. S → bB
3. B → {print}

The method S for the recursive descent translator will print the action symbol
print only if the input is an a. It is important always to check for the input
symbols in the selection set before processing action symbols. Also, rule 3 is
really an epsilon rule in the underlying grammar, since there are no terminals
or nonterminals. Using the algorithm for selection sets, we find that:
Sel(1) = {a}
Sel(2) = {b}
Sel(3) = {←֓}

The recursive descent translator for grammar G18 is shown below:

void S ()

{ if (inp==’a’)

{ getInp(); // apply rule 1

System.out.println ("print");

S();

} // end rule 1

else if (inp==’b’)

{ getInp(); // apply rule 2

B();

} // end rule 2

else Reject ();

}

void B ()

{ if (inp==Endmarker) System.out.println ("print");

// apply rule 3

else Reject ();

}

With these concepts in mind, we can now write a recursive descent translator
to translate infix expressions to postfix according to grammar G17:

final int var = 256; // var token

char inp;
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void Expr ()

{ if (inp==’(’ || inp==var)

{ Term (); // apply rule 1

Elist ();

} // end rule 1

else Reject ();

}

void Elist ()

{ if (inp==’+’)

{ getInp(); // apply rule 2

Term ();

System.out.println (’+’);

Elist ();

} // end rule 2

else if (inp==Endmarker || inp==’)’) ; // apply rule 3

else Reject ();

}

void Term ()

{ if (inp==’(’ || inp==var)

{ Factor (); // apply rule 4

Tlist ();

} // end rule 4

else Reject ();

}

void Tlist ()

{ if (inp==’*’)

{ getInp(); // apply rule 5

Factor ();

System.out.println (’*’);

Tlist ();

} // end rule 5

else if (inp==’+’ || inp==’)’ || inp=Endmarker) ;

// apply rule 6

else Reject ();

}

void Factor ()

{ if (inp==’(’)

{ getInp(); // apply rule 7

Expr ();

if (inp==’)’) getInp();

else Reject ();

} // end rule 7
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else if (inp==var)

{ getInp(); // apply rule 8

System.out.println ("var");

} // end rule 8

else Reject ();

}

Sample Problem 4.5.1

Show an extended pushdown translator for the translation grammar
G18.

Solution:

a b N

Rep (Sa{print}) Rep (Bv)

S Retain Retain Reject

Rep ({print})

B Reject Reject Retain

Pop

a Adv

Reject Pop

b Adv

Pop Pop Pop S

{print} Retain Retain Retain ,

Out ({print}) Out ({print}) Out ({print})

Initial

, Reject Reject Accept Stack
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4.5.3 Exercises

1. Consider the following translation grammar with starting nonterminal S,
in which action symbols are put out:

1. S → A b B
2. A → {w} a c
3. A → b A {x}
4. B → {y}

Show a derivation tree and the output string for the input bacb.

2. Show an extended pushdown translator for the translation grammar of
Problem 1.

3. Show a recursive descent translator for the translation grammar of Prob-
lem 1.

4. Write the Java statement which would appear in a recursive descent parser
for each of the following translation grammar rules:

(a) A→ {w}a{x}BC

(b) A→ a{w}{x}BC

(c) A→ a{w}B{x}C

4.6 Attributed Grammars

It will soon become clear that many programming language constructs cannot
be adequately described with a context-free grammar. For example, many lan-
guages stipulate that a loop control variable must not be altered within the
scope of the loop. This is not possible to describe in a practical way with a
context-free grammar. Also, it will be necessary to propagate information, such
as a location for the temporary result of a subexpression, from one grammar rule
to another. Therefore, we extend grammars further by introducing attributed
grammars, in which each of the terminals and nonterminals may have zero or
more attributes, normally designated by subscripts, associated with it. For ex-
ample, an attribute on an Expr nonterminal could be a pointer to the stack
location containing the result value of an evaluated expression. As another ex-
ample, the attribute of an input symbol (a lexical token) could be the value part
of the token.

In an attributed grammar there may be zero or more attribute computation
rules associated with each grammar rule. These attribute computation rules
show how the attributes are assigned values as the corresponding grammar rule
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+

*

const3

Expr3

const4

Expr4

Expr12

+

const5

Expr5

const6

Expr6

Expr11

Expr23

Figure 4.15: A attrubuted derivation tree for the prefix expression + * 3 4 +

5 6 using grammar G19

is applied during the parse. One way for the student to understand attributed
grammars is to build derivation trees for attributed grammars. This is done
by first eliminating all attributes from the grammar and building a derivation
tree. Then, attribute values are entered in the tree according to the attribute
computation rules. Some attributes take their values from attributes of higher
nodes in the tree, and some atttributes take their values from attributes of lower
nodes in the tree. For this reason, the process of filling in attribute values is
not straightforward.

As an example, grammar G19 is an attributed (simple) grammar for prefix
expressions involving addition and multiplication. The attributes, shown as
subscripts, are intended to evaluate the arithmetic expression. The attribute on
the terminal const is the value of the constant as supplied by the lexical phase.
Note that this kind of expression evaluation is typical of what is done in an
interpreter, but not in a compiler.

G19:

1. Exprp → +ExprqExprr p ← q + r
2. Exprp → ∗ExprqExprr p ← q * r
3. Exprp → constq p ← q

An attributed derivation tree for the input + * 3 4 + 5 6 is shown in Fig-
ure 4.15. The attribute on each subexpression is the value of that subexpression.
This example was easy because all of the attribute values are taken from a lower
node in the tree. These are called synthesized attributes.

A second example, involving attribute values taken from higher nodes in
the tree is shown in Figure 4.16. These are called inherited attributes. As an
example of a grammar with inherited attributes, the following is a grammar
for declarations of a numeric data type. In grammar G20, type is a terminal
(token) whose value part may be a type such as int, float, etc. This grammar
is used to specify type declarations, such as int x,y,z;. We wish to store the
type of each identifier with its symbol table entry. To do this, the type must be
passed down the derivation tree to each of the variables being declared.

G20:
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typeint

vara

, varb

, varc

ǫ

Listint

Listint

Listint

V arlistint

Dcl

Figure 4.16: A attrubuted derivation tree for int a,b,c; using grammar G20

1. Dcl → typetV arlistw; w ← t
2. V arListw → varxListy y ← w
3. Listw → , varxListy y ← w
4. Listw → ǫ

An attributed derivation tree for the input string int a,b,c is shown in
Figure 4.16. Note that the values of the attributes move either horizontally on
one level (rule 1) or down to a lower level (rules 2 and 3). It is important to
remember that the number and kind of attributes of a symbol must be consis-
tent throughout the entire grammar. For example, if the symbol Ai,s has two
attributes, the first being inherited and the second synthesized, then this must
be true everywhere the symbol A appears in the grammar.

4.6.1 Implementing Attributed Grammars with Recursive
Descent

To implement an attributed grammar with recursive descent, the attributes will
be implemented as parameters or instance variables in the methods defining
nonterminals. For example, if Sa,b is a nonterminal with two attributes, then
the method S will have two parameters, a and b. Synthesized attributes are
used to return information to the calling method and, hence, must be imple-
mented with objects (i.e. with reference types). If the attribute is to store
a whole number, we would be tempted to use the Java wrapper class Integer
for synthesized attributes. Unfortunately, the Integer class is not mutable, i.e.
Integer objects cannot be changed. Thus we will build our own wrapper class,
called MutableInt, to store a whole number whose value can be changed. This
class is shown in below:

// Wrapper class for ints which lets you change the value.

// This class is needed to implement attributed grammars

// with recursive descent

class MutableInt extends Object
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{ int value; // store a single int

MutableInt (int i) // Initializing constructor

{ value = i; }

MutableInt () // Default constructor

{ value = 0; // default value is 0

}

int get() // Accessor

{ return value; }

void set (int i) // Mutator

{ value = i; }

public String toString() // For printing

{ return "" + value; }

}

Since inherited attributes pass information to the called method, they may
be passed by value or by using primitive types. Action symbol attributes will
be implemented as instance variables. Care must be taken that the attribute
computation rules are included at the appropriate places. Also, care must be
taken in designing the attributed grammar that the computation rules do not
constitute a contradiction. For example:

Sp ← aArBs p← r + s

The recursive descent method for S would be:

void S (MutableInt p)

{ if (token.getClass()==’a’)

{ token.getToken();

A(r);

B(s);

// this must come after calls to A(r), B(s)

p.set(r.get() + s.get());

}

}

In this example, the methods S, A, and B (A and B are not shown) all return
values in their parameters (they are synthesized attributes, implemented with
references), and there is no contradiction. However, assuming that the attribute
of the B is synthesized, and the attribute of the A is inherited, the following
rule could not be implemented:

S → aApBq p← q
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In the method S, q will not have a value until method B has been called
and terminated. Therefore, it will not be possible to assign a value to p before
calling method A. This assumes, as always, that input is read from left to right.

Sample Problem 4.6.1

Show a recursive descent parser for the attributed grammar G19.
Assume that the Token class has accessor methods, getClass() and
getVal(), which return the class and value parts of a lexical token,
respectively. The method getToken() reads in a new token.

Solution:

class RecDescent

{

// int codes for token classes

final int Num=0; // numeric constant

final int Op=1; // operator

final int End=2; // endmarker

Token token;

void Eval ()

{ MutableInt p = new MutableInt(0);

token = new Token();

token.getToken(); // Read a token from stdin

Expr(p);

// Show final result

if (token.getClass() == End)

System.out.println (p);

else reject();

}

void Expr (MutableInt p)

{ MutableInt q = new MutableInt(0), // Attibutes q,r

r = new MutableInt(0);

if (token.getClass()==Op)

if (token.getVal()==(int)’+’) // apply rule 1

{ token.getToken(); // read next token

Expr(q);

Expr(r);

p.set (q.get() + r.get());
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} // end rule 1

else // should be a *, apply rule 2

{ token.getToken(); // read next token

Expr(q);

Expr(r);

p.set (q.get() * r.get());

} // end rule 2

else if (token.getClass() == Num) // is it a numeric constant?

{ p.set (token.getVal()); // apply rule 3

token.getToken(); // read next token

} // end rule 3

else reject();

}

4.6.2 Exercises

1. Consider the following attributed translation grammar with starting non-
terminal S, in which action symbols are output:

1. Sp → AqbrAt p← r + t
2. Ap → ap{w}pc
3. Ap → bqAr{x}p p← q + r

Show an attributed derivation tree for the input string a1cb2b3a4c, and
show the output symbols with attributes corresponding to this input.

2. Show a recursive descent translator for the grammar of Problem 1. Assume
that all attributes are integers and that, as in sample problem 4.6, the
Token class has methods getClass() and getValue() which return the class
and value parts of a lexical token, and the Token class has a getToken()
method which reads a token from the standard input file. p

3. Show an attributed derivation tree for each input string using the following
attributed grammar:

1. Sp → Aq,rBt p← q ∗ t
r← q + t

2. Ap,q → brAt,uc u← r
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p← r + t+ u
3. Ap,q → ǫ p← 0
4. Bp → ap

(a) a2

(b) b1ca3

(c) b2b3cca4

4. Is it possible to write a recursive descent parser for the attributed trans-
lation grammar of Problem 3?

4.7 An Attributed Translation Grammar for Ex-

pressions

In this section, we make use of the material presented thus far on top down
parsing to implement a translator for infix expressions involving addition and
multiplication. The output of the translator will be a stream of atoms, which
could be easily translated to the appropriate instructions on a typical target
machine. Each atom will consist of four parts: (1) an operation, ADD or MULT,
(2) a left operand, (3) a right operand, and (4) a result. (Later, in section 4.8,
we will need to add two more fields to the atoms.) For example, if the input
were A + B * C + D, the output could be the following three atoms:

MULT B C T1

ADD A T1 T2

ADD T2 D T3

Note that our translator will have to find temporary storage locations (or use
a stack) to store intermediate results at run time. It would indicate that the final
result of the expression is in T3. In the attributed translation grammar G21,
shown below, all nonterminal attributes are synthesized, with the exception of
the first attribute on Elist and Tlist, which are inherited:

G21:

1. Exprp → TermqElistq,p
2. Elistp,q → +Termr{ADD}p,r,sElists,q s← alloc()
3. Elistp,q → ǫ q ← p
4. Termp → FactorqT listq,p
5. T listp,q → ∗Factorr{MULT }p,r,sT lists,q s← alloc()
6. T listp,q → ǫ q ← p
7. Factorp → (Exprp)
8. Factorp → identp
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The intent of the action symbol {ADD}p,r,s is to put out an ADD atom with
operands p and r and result s. In many rules, several symbols share an attribute;
this means that the attribute is to have the same value on those symbols. For
example, in rule 1 the attribute of Term is supposed to have the same value as
the first attribute of Elist. Consequently, those attributes are given the same
name. This also could have been done in rules 3 and 6, but we chose not to
do so in order to clarify the recursive descent parser. For this reason, only
four attribute computation rules were needed, two of which involved a call to
alloc(). alloc() is a method which allocates space for a temporary result and
returns a reference to it (in our examples, we will call these temporary results
T1, T2, T3, etc). The attribute of an ident token is the value part of that
token, indicating the run-time location for the variable.

Sample Problem 4.7.1

Show an attributed derivation tree for the expression a+b using
grammar G21.

Solution:

identa

Factora

ǫ

T lista,a

Terma

+

identb

Factorb

ǫ

T listb,b

Termb [ADD]a,b,T1

ǫ

ElistT1,T1

Elista,T1

ExprT1

4.7.1 Translating Expressions with Recursive Descent

In the recursive descent translator which follows, synthesized attributes of non-
terminals are implemented as references, and inherited attributes are imple-
mented as primitives. The alloc() and atom() methods are not shown here.
alloc simply allocates space for a temporary result, and atom simply puts out
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an atom, which could be a record consisting of four fields as described, above,
in Section 4.7. Note that the underlying grammar of G21 is the grammar for
expressions, G16, given in Section 4.4. The selection sets for this grammar are
shown in that section. As in sample problem 4.6, we assume that the Token
class has methods getClass() and getToken(). Also, we use our wrapper class,
MutableInt, for synthesized attributes.

class Expressions

{

Token token;

static int next = 0; // for allocation of temporary

// storage

public static void main (String[] args)

{

Expresssions e = new Expressions();

e.eval ();

}

void eval ()

{ MutableInt p = new MutableInt(0);

token = new Token();

token.getToken();

Expr (p); // look for an expression

if (token.getClass()!=Token.End) reject();

else accept();

}

void Expr (MutableInt p)

{ MutableInt q = new MutableInt(0);

if (token.getClass()==Token.Lpar ||

token.getClass()==Token.Ident

|| token.getClass()==Token.Num)

{ Term (q); // apply rule 1

Elist (q.get(),p);

} // end rule 1

else reject();

}

void Elist (int p, MutableInt q)

{ int s;
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MutableInt r = new MutableInt();

if (token.getClass()==Token.Plus)

{ token.getToken(); // apply rule 2

Term (r);

s = alloc();

atom ("ADD", p, r, s); // put out atom

Elist (s,q);

} // end rule 2

else if (token.getClass()==Token.End ||

token.getClass()==Token.Rpar)

q.set(p); // rule 3

else reject();

}

void Term (MutableInt p)

{ MutableInt q = new MutableInt();

if (token.getClass()==Token.Lpar

|| token.getClass()==Token.Ident

|| token.getClass()==Token.Num)

{ Factor (q); // apply rule 4

Tlist (q.get(),p);

} // end rule 4

else reject();

}

void Tlist (int p, MutableInt q)

{ int inp, s;

MutableInt r = new MutableInt();

if (token.getClass()==Token.Mult)

{ token.getToken(); // apply rule 5

inp = token.getClass();

Factor (r);

s = alloc();

atom ("MULT", p, r, s);

Tlist (s,q);

} // end rule 5

else if (token.getClass()==Token.Plus

|| token.getClass()==Token.Rpar

|| token.getClass()==Token.End)

q.set (p); // rule 6

else reject();

}

void Factor (MutableInt p)

{ if (token.getClass()==Token.Lpar)

{ token.getToken(); // apply rule 7

Expr (p);
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if (token.getClass()==Token.Rpar)

token.getToken();

else reject();

} // end rule 7

else if (token.getClass()==Token.Ident

|| token.getClass()==Token.Num)

{ p.set(alloc()); // apply rule 8

token.getToken();

} // end rule 8

else reject();

}

4.7.2 Exercises

1. Show an attributed derivation tree for each of the following expressions,
using grammar G21. Assume that the alloc method returns a new tem-
porary location each time it is called (T1, T2, T3, ...).

(a) a + b * c

(b) (a + b) * c

(c) (a)

(d) a * b * c

2. In the recursive descent translator of Section 4.7.1, refer to the method
Tlist. In it, there is the following statement:

Atom (MULT, p, r, s)

Explain how the three variables p,r,s obtain values before being put out
by the atom method.

3. Improve grammar G21 to include the operations of subtraction and divi-
sion, as well as unary plus and minus. Assume that there are SUB and
DIV atoms to handle subtraction and division. Also assume that there is
a NEG atom with two attributes to handle unary minus; the first is the
expression being negated and the second is the result.

4.8 Decaf Expressions

Thus far we have seen how to translate simple infix expressions involving only
addition and multiplication into a stream of atoms. Obviously, we also need to
include subtraction and division operators in our language, but this is straight-
forward, since subtraction has the same precedence as addition and division has
the same precedence as multiplication. In this section, we extend the notion
of expression to include comparisons (boolean expressions) and assignments.
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Boolean expressions are expressions such as x > y, or y−2 == 33. For those stu-
dents familiar with C and C++, the comparison operators return ints (0=false,
1=true), but Java makes a distinction: the comparison operators return boolean
results (true or false). If you have ever spent hours debugging a C or C++ pro-
gram which contained if (x=3)... when you really intended if (x==3) ...,
then you understand the reason for this change. The Java compiler will catch
this error for you (assuming that x is not a boolean).

Assignment is also slightly different in Java. In C/C++ assignment is an
operator which produces a result in addition to the side effect of assigning a
value to a variable. A statement may be formed by following any expression
with a semicolon. This is not the case in Java. The expression statement must
be an assignment or a method call. Since there are no methods in Decaf, we’re
left with an assignment.

4.8.1 LBL, JMP, TST, and MOV atoms

At this point we need to introduce three new atoms indicated in Figure 4.17:
LBL (label), JMP (jump, or unconditional branch), and TST (test, or con-
ditional branch). A LBL atom is merely a placemarker in the stream of atoms
that is put out. It represents a target location for the destination of a branch,
such as JMP or TST. Ultimately, a LBL atom will represent the run-time mem-
ory address of an instruction in the object program. A LBL atom will always
have one attribute which is a unique name for the label. A JMP atom is an
unconditional branch; it must always be accompanied by a label name - the
destination for the branch. A JMP atom will have one attribute - the name
of the label which is the destination. A TST atom is used for a conditional
branch. It will have four attributes: two attributes will identify the locations of
two expressions being compared; another attribute will be a comparison code
(1 is ==, 2 is <, ...); the fourth attribute will be the name of the label which is
the destination for the branch. The intent is for the branch to occur at run time
only if the result of comparing the two expressions with the given comparison
operator is true.

To implement the assignment operator we will need a MOV atom which
copies the value of one attribute to another:

MOVsource,,target will move the value at at the source location to the target
location at run time. (The omitted subscript is for compatibility with other
atoms)

4.8.2 Boolean expressions

We will now explain the translation of boolean expressions. It turns out that
every time we need to use a boolean expression in a statement, we really want
to put out a TST atom that branches when the comparison is false.

In each case the source input is at the left, and the atoms to be put out are
indented to the right. Rather than showing all the attributes at this point, their
values are indicated with comments:
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Atom Attributes Purpose
LBL label name Mark a spot to be used as a branch destination
JMP label name Unconditional branch to the label specified
TST Expr1 Compare Expr1 and Expr2 using the comparison code.

Expr2 Branch to the label if the result is true.
comparison code
label name

Figure 4.17: Atoms used for transfer of control

if

(x==3)

[TST] // Branch to the Label only if

Stmt // x==3 is false

[Label]

/////////////////////////////////////////////////////

while

[Label1]

(x>2)

[TST] // Branch to Label2 only if

Stmt // x>2 is false

[JMP] // Unconditional branch to Label1

[Label2]

Recall our six comparison codes; to get the logical complement of any com-
parison, we simply subtract the code from 7 as shown below:

Comparison Code Logical Complement Code for complement

== 1 != 6

< 2 >= 5

> 3 <= 4

<= 4 > 3

>= 5 < 2

!= 6 == 1

Thus, to process a boolean expression all we need to do is put out a TST
atom which allocates a new label name and branches to that label when the
comparison is false (the label atom itself will be handled later, in section 4.9).
Thus the attributed grammar rule for a boolean expression will be:

BoolExprLbl → Exprp comparec Exprq {TST }p,q,,7−c,Lbl
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The TST atom represents a conditional branch in the object program. {TST }a,b,,c,x
will compare the values stored at a and b, using the comparison whose code is
c, and branch to a label designated x if the comparision is true. In the grammar
rule above the attribute of BoolExpr, Lbl, is synthesized and represents the tar-
get label for the TST atom to branch in the object program. The attribute of
the token compare, c, is an integer from 1-6 representing the comparison code.
The use of comparison code 7-c inverts the sense of the comparison as desired.

4.8.3 Assignment

Next we handle assignment; an assignment is an operator which returns a result
that can be used as part of a larger expression. For example:

x = (y = 2) + (z = 3); // y is 2, z is 3, x is 5

Thus, an assignment operator does two things:

1. Assign the value of the right operand to the variable which is the left
operand. This is a side effect, though a very important one, and it is the
most common reason for using an assignment operator.

2. Return an explicit result: the value which was assigned. This is rarely
used. The returned value is usually discarded.

This means that we will need to put out a MOV atom to implement the
assignment, in addition to giving it a synthesized attribute to be moved up the
tree. The left operand of the assignment must be an identifier, or what is often
called an lvalue. Also, note that unlike the arithmetic operators, this operator
associates to the right, which permits multiple assignments such as:

x = y = z = 0; // x, y, and, z are now all 0.

We could use a translation grammar such as the following:
Exprp → AssignExprp

AssignExprp → identp = Exprq{MOV }q,,p
in which the location of the result is the same as the location of the identifier

receiving the value. The attribute of the Expr, again, is synthesized. The output
for an expression such as a = b + (c = 3) will be:

(MOV, 3,,c)

(ADD, b,c,T1)

(MOV, T1,,a)
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An attributed translation grammar for Decaf expressions involving addition,
subtraction, multiplication, division, comparisons, and assignment is shown be-
low:

1. BoolExprL1 → ExprpcomparecExprq{TST }p,q,,7−c,L1 L1← newLabel()
2. Exprp → AssignExprp
3. Exprp → Rvaluep
4. AssignExprp → identp = Exprq{MOV }q,,p
5. Rvaluep → TermqElistq,p
6. Elistp,q → +Termr{ADD}p,r,sElists,q s← alloc()
7. Elistp,q → −Termr{SUB}p,r,sElists,q s← alloc()
8. Elistp,q → ǫ q ← p
9. Termp → FactorqT listq,p
10. T listp,q → ∗Factorr{MUL}p,r,sT lists,q s← alloc()
11. T listp,q → /Factorr{DIV }p,r,sT lists,q s← alloc()
12. T listp,q → ǫ q ← p
13. Factorp → (Exprp)
14. Factorp → +Factorp
15. Factorp → −Factorq{Neg}q,,p p← alloc()
16. Factorp → nump

17. Factorp → identp

Note that the selection set for rule 2 is {ident} and the selection set for
rule 3 is {ident, (, num}. Since rules 2 and 3 define the same nonTerminal, this
grammar is not LL(1). We can work around this problem by noticing that an
assignment expression must have an assignment operator after the identifier.
Thus, if we peek ahead one input token, we can determine whether to apply
rule 2 or 3. If the next input token is an assignment operator, apply rule 2;
if not, apply rule 3. This can be done with a slight modification to our token
class - a peek() method which returns the next input token, but which has no
effect on the next call to getInput(). The grammar shown above is said to be
LL(2) because we can parse it top down by looking at no more than two input
symbols at a time.

Sample Problem 4.8.1

Using the grammar for Decaf expressions given in this section,
show an attributed derivation tree for the boolean expression a ==

(b=3) + c .

Solution:
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identa

Factora

ǫ

T lista,a

Terma

ǫ

Elista,a

Rvaluea

Expra compare1

(

identb =

num3

Factor3

ǫ

T list3,3

Term3

ǫ

Elist3,3

Rvalue3

Expr3 [MOV ]3,,b

AssignExprb

Exprb )

Factorb

ǫ

T listb,b

Termb

+

identc

Factorc

ǫ

T listc,c

Termc [ADD]b,c,T1

ǫ

ElistT1,T1

Elistb,T1

RvalueT1

ExprT1 [TST ]a,T1,,6,L1

BoolExprL1

4.8.4 Exercises

1. Show an attributed derivation tree using the grammar for Decaf expres-
sions given in this section for each of the following expressions or boolean
expressions (in part (a) start with Expr; in parts (b,c,d,e) start with Bool-
Expr):

(a) a = b = c

(b) a == b + c

(c) (a=3) <= (b=2)

(d) a == - (c = 3)

(e) a * (b=3) + c != 9

2. Show the recursive descent parser for the nonterminals BoolExpr, Rvalue,
and Elist given in the grammar for Decaf expressions. Hint: the selection
sets for the first eight grammar rules are:
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Sel (1) = {ident, num, (, +, -}

Sel (2) = {ident}

Sel (3) = {ident, num, (, +, -}

Sel (4) = {ident}

Sel (5) = {ident, num, (, +, -}

Sel (6) = {+}

Sel (7) = {-}

Sel (8) = {), N}

4.9 Translating Control Structures

In order to translate control structures, such as for, while, and if state-
ments, we must first consider the set of primitive control operations available on
the target machine. These are typically simple operations such as Unconditional
Jump or Goto, Compare, and Conditional Jump. In order to implement these
Jump operations, we need to establish a jump, or destination, address.

During the parse or syntax analysis phase there are, as yet, no machine
addresses attached to the output. In addition, we must handle forward jumps
when we do not know the destination of the jump. To solve this problem we
introduce a special atom called a Label, which is used to mark the destination
of a jump. During code generation, a machine address is associated with each
Label atom. At this point, we need to add two additional fields to our atoms:
one for comparison codes (1-6) and one for jump destinations.

We will use the following atoms to implement control structures:

JMP - - - - Lbl Unconditional jump to the specified label

TST E1 E2 - Cmp Lbl Conditional branch if comparison is true

LBL - - - - Lbl Label used as branch destination

The purpose of the TST atom is to compare the values of expressions E1
and E2 using the specified comparison operator, Cmp, and then branch to
the label Lbl if the comparison is true. The comparison operator will be the
value part of the comparison token (there are six, shown below). For example,
TST,A,C,,4,L3 means jump to label L3 if A is less than or equal to C. The six
comparison operators and codes are:

== is 1 <= is 4

< is 2 >= is 5

> is 3 != is 6
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The LBL atom is used as a tag or marker so that JMP and TST atoms
can refer to a branch destination without knowing target machine addresses for
these destinations.

In addition, there is one more atom which is needed for assignment state-
ments; it is a Move atom, which simply assigns its source operand to its target
operand:

MOV Source - Target - - Target = Source

Figure 4.18 shows the sequence in which atoms are put out for the control
structures for while and for statements (from top to bottom). Figure 4.19
shows the same information for the if statement. These figures show the input
tokens, as well, so that you understand when the atoms are put out. The arrows
indicate flow of control at run time; the arrows do not indicate the sequence in
which the compiler puts out atoms. In Figures 4.18 and 4.19, the atoms are all
enclosed in a boundary: ADD and JMP atoms are enclosed in rectangles, LBL
atoms are enclosed in ovals, and TST atoms are enclosed in diamond shaped
parallelograms.

The control structures in Figure 4.18 correspond to the following statement
definitions:
1. Stmt→ while(BoolExpr)Stmt
2. Stmt→ for(Expr;BoolExpr;Expr)Stmt

The control structures in Figure 4.19 correspond to the following statement
definitions:
3. Stmt→ if(BoolExpr)Stmt ElsePart
4. ElsePart→ else Stmt
5. ElsePart→ ǫ

For the most part, Figures 4.18 and 4.19 are self explanatory. In Figure 4.19
we also show that a boolean expression always puts out a TST atom which
branches if the comparison is false. The boolean expression has an attribute
which is the target label for the branch. Note that for if statements , we must
jump around the statement which is not to be executed. This provides for a
relatively simple translation.

Unfortunately, the grammar shown above is not LL(1). This can be seen by
finding the follow set of ElsePart, and noting that it contains the keyword else.
Consequently, rules 4 and 5 do not have disjoint selection sets. However, it is
still possible to write a recursive descent parser. This is due to the fact that all
elses are matched with the closest preceeding unmatched if. When our parser
for the nonterminal ElsePart encounters an else, it is never wrong to apply
rule 4 because the closest preceeding unmatched if must be the one on top of
the recursive call stack. Aho et. al.[1] claims that there is no LL(1) grammar
for this language. This is apparently one of those rare instances where theory
fails, but our practical knowledge of how things work comes to the rescue.
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for stmt 

for 

( Expr ; 

Lbl Lbl1 

Lbl Lbl4 

Lbl Lbl3 

BoolExprLbl2 ; 

JMP Lbl3 

Exprq ) 

JMP Lbl1 

Stmt 

JMP Lbl4 

Lbl Lbl2 

while stmt 

while 

Lbl Lbl1 

( BoolExprLbl2 ) 

Stmt 

JMP Lbl1 

Lbl Lbl2 

False 

False 

Figure 4.18: Control structures for while and for statements
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Else Part (may be omitted) 

     else 

     Stmt 

if  stmt 

  If 

Stmt 

JMP Lbl2 

LBL Lbl1 

False 

LBL Lbl2 

ElsePart 

BoolExprLbl 

Exprp 

Exprq 

comparec 

TST p,q,,7-c,Lbl 

( BoolExprLbl1 ) 

Figure 4.19: Control structures for if statements
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The for statement described in Figure 4.18 requires some additional expla-
nation. The following for statement and while statement are equivalent:

for (E1; boolean; E2) E1 ;

Stmt while (boolean)

{ Stmt

E2;

}

This means that after the atoms for the stmt are put out, we must put out
a jump to the atoms corresponding to expression E2. In addition, there must
be a jump after the atoms of expression E2 back to the beginning of the loop,
boolean. The LL(2) grammar for Decaf shown in the next section makes direct
use of Figures 4.18 and 4.19 for the control structures.

Sample Problem 4.9.1

Show the atom string which would be put out that corresponds to
the following Java statement:

while (x > 0) Stmt

Solution:

(LBL, L1)

(TST,x,0,,4,L2) // Branch to L2 if x<=0

Atoms for Stmt

(JMP,L1)

(LBL,L2)
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4.9.1 Exercises

1. Show the sequence of atoms which would be put out according to Figures
4.18 and 4.19 for each of the following input strings:

(a) if (a==b)

while (x<y)

Stmt

(b) for (i = 1; i<=100; i = i+1)

for (j = 1; j<=i; j = j+1)

Stmt

(c) if (a==b)

for (i=1; i<=20; i=i+1)

Stmt1

else

while (i>0)

Stmt2

(d) if (a==b)

if (b>0)

Stmt1

else

while (i>0)

Stmt2

2. Show an attributed translation grammar rule for each of the control struc-
tures given in Figures 4.18 and 4.19. Assume if statements always have
an else part and that there is a method, newlab, which allocates a new
statement label.

1. WhileStmt→ while(BoolExpr)Stmt
2. ForStmt→ for(AssignExpr;BoolExpr;AssignExpr)Stmt
3. IfStmt→ if(BoolExpr)StmtelseStmt

3. Show a recursive descent translator for your solutions to Problem 2. Show
methods for WhileStmt, ForStmt, and IfStmt.

4. Does your Java compiler permit a loop control variable to be altered inside
the loop, as in the following example?

for (int i=0; i<100; i = i+1)

{ System.out.println (i);

i = 100;

}



4.10. CASE STUDY: A TOP DOWN PARSER FOR DECAF 159

4.10 Case Study: A Top Down Parser for Decaf

In this section we show how the concepts of this chapter can be applied to a
compiler for a subset of Java, i.e. the Decaf language. We will develop a top
down parser for Decaf and implement it using the technique known as recursive
descent. The program is written in Java and is available at
http://www.rowan.edu/~bergmann/books. Note that in the software package
there are actually two parsers: one is top down (for this chapter) and the other
is bottom up (for Chapter 5). The bottom up parser is the one that is designed
to work with the other phases to form a complete compiler. The top down
parser is included only so that we can have a case study for this chapter. The
SableCC grammar file, decaf.grammar, is used solely for lexical analysis at this
point.

In order to write the recursive descent parser, we will need to work with a
grammar that is LL. This grammar is relatively easy to write and is shown in
Figure 4.20. The most difficult part of this grammar is the part which defines
arithmetic expressions. It is taken directly from section 4.8.

The rest of the grammar is relatively easy because Java, like C and C++,
was designed to be amenable to top-down parsing (in the tradition of Pascal);
the developer of C++ recommends recursive descent parsers (see Stroustrup
1994). To see this, note that most of the constructs begin with key words. For
example, when expecting a statement, the parser need examine only one token
to decide which kind of statement it is. The possibilities are simply for, if,
while, {, or identifier. In other words, the part of the Decaf grammar defining
statements is simple (in the technical sense). Note that the C language permits
a statement to be formed by appending a semicolon to any expression; Java,
however, requires a simple statement to be either an assignment or a method
call.

In Figure 4.20 there are two method calls: alloc() and newlab(). The purpose
of alloc() is to find space for a temporary result, and the purpose of newlab() is
to generate new label numbers, which we designate L1, L2, L3, ....

The control structures in Figure 4.20 are taken from Figures 4.18 and 4.19
and are described in section 4.9. As mentioned in that section, the convoluted
logic flow in the for statement results from the fact that the third expression
needs to be evaluated after the loop body is executed, and before testing for the
next iteration.

The recursive descent parser is taken directly from Figure 4.20. The only
departure is in the description of iterative structures such as IdentList and Ar-
gList. Context-free grammars are useful in describing recursive constructs, but
are not very useful in describing these iterative constructs. For example, the
definition of IdentList is:
IdentList→ identifier
IdentList→ identifier, IdentList

While this is a perfectly valid definition of IdentList, it leads to a less efficient
parser (for those compilers which do not translate tail recursion into loops).

http://www.rowan.edu/~bergmann/books
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Program → classidentifier{publicstaticvoidmain(String[]identifier)CompoundStmt}
Declaration → TypeIdentlist;
Type → int

|float
IdentList → identifier, IdentList

|identifier
Stmt → AssignStmt

|ForStmt
|WhileStmt
|IfStmt
|CompoundStmt
|Declaration
|;

AssignStmt → AssignExprp;
ForStmt → for(OptAssignExprr ; {LBL}Lbl1OptBoolExprLbl4; {JMP}Lbl2{LBL}Lbl3

OptAssignExprr){JMP}Lbl1{LBL}Lbl2Stmt{JMP}Lbl3{LBL}Lbl4

Lbl1← newlab() Lbl2← newlab()
Lbl3← newlab()

WhileStmt → while{LBL}Lbl1(BoolExprLbl2)
Stmt{JMP}Lbl1{LBL}Lbl2

Lbl1← newlab()
IfStmt → if(BoolExprLbl1)

Stmt{JMP}Lbl2{LBL}Lbl1ElsePart{LBL}Lbl2

Lbl2← newlab()
Elsepart → elseStmt

|ǫ
CompoundStmt→ {StmtList}

|ǫ
StmtList → StmtListStmt

|ǫ
OptAssignExpr→ AssignExprp

|ǫ
OptBoolExprLbl1→ BoolExprLbl1

|ǫ
BoolExprLbl1 → BoolExprLbl1

Lbl1← newlab()
Exprp → AssignExprp

|RvalueqElistq,p
AssignExprp → identifierp = Exprq{MOV }q,,p
Rvaluep → TermqElistp,q
Elistp,q → +Termr{ADD}p,r,sElists,qs← alloc()

| − Termr{SUB}p,r,sElists,qs← alloc()
|ǫ q ← p

Rvaluep → FactorqT listp,q
T listp,q → ∗Factorr{MUL}p,r,sT lists,qs← alloc()

|/Factorr{DIV }p,r,sT lists,qs← alloc()
|ǫ q ← p

Factorp → (Exprp)
Factorp → +Factorp
Factorp → −Factorq{NEG}q,,pp← alloc()
Factorp → nump

Factorp → identifierp

Figure 4.20: An attributed translation grammar for Decaf
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What we really want to do is use a loop to scan for a list of identifiers separated
by commas. This can be done as follows:

if (token.getClass() != IDENTIFIER) error();

while (token.getClass() == IDENTIFIER)

{ token.getToken();

if (token.getClass() == ’,’)

token.getToken();

}

We use this methodology also for the methods ArgList() and StmtList().
Note that the fact that we have assigned the same attribute to certain sym-

bols in the grammar, saves some effort in the parser. For example, the definition
of Factor uses a subscript of p on the Factor as well as on the Expr, identifier,
and number on the right side of the arrow. This simply means that the value
of the Factor is the same as the item on the right side, and the parser is simply
(ignoring unary operations):

void Factor (MutableInt p);

{ if (token.getClass() == ’(’ )

{ token.getToken();

Expr (p);

if (token.getClass() == ’)’) token.getToken();

else error();

}

else if (inp == IDENTIFIER)

{ // store the value part of the identifier

p.set (token.getValue());

token.getToken();

}

else if (inp == NUMBER)

{ p.set (token.getValue());

token.getToken();

}

else // check for unary operators +, - ...

4.10.1 Exercises

1. Show the atoms put out as a result of the following Decaf statement:

if (a==3)

{ a = 4;

for (i = 2; i<5; i=0 )

i = i + 1;

}
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else

while (a>5)

i = i * 8;

2. Explain the purpose of each atom put out in our Decaf attributed trans-
lation grammar for the for statement:

ForStmt→ for(OptExprp; {LBL}Lbl1OptBoolExprLbl3;
{JMP}Lbl2{LBL}Lbl4OptExprr){JMP}Lbl1

{LBL}Lbl2Stmt{JMP}Lbl4{LBL}Lbl3

Lbl1← newlab()Lbl2← newlab()
Lbl3← newlab()Lbl4← newlab()

3. The Java language has a switch statement.

(a) Include a definition of the switch statement in the attributed trans-
lation grammar for Decaf.

(b) Check your grammar by building an attributed derivation tree for a
sample switch statement of your own design.

(c) Include code for the switch statement in the recursive descent parser,
decaf.java and parse.java .

4. Using the grammar of Figure 4.20, show an attributed derivation tree for
the statement given in problem 1, above.

5. Implement a do-while statement in decaf, following the guidelines in
problem 3.

4.11 Chapter Summary

A parsing algorithm reads an input string one symbol at a time, and determines
whether the string is a member of the language of a particular grammar. In
doing so, the algorithm uses a stack as it applies rules of the grammar. A
top down parsing algorithm will apply the grammar rules in a sequence which
corresponds to a downward direction in the derivation tree.

Not all context-free grammars are suitable for top down parsing. In general,
the algorithm needs to be able to decide which grammar rule to apply without
looking ahead at additional input symbols. We present an algorithm for finding
selection sets, which are sets of input symbols, one set for each rule, and are
used to direct the parser. Since the process of finding selection sets is fairly
complex, we first define simple and quasi-simple grammars in which the process
is easier.

We present two techniques for top down parsing: (1) pushdown machines and
(2) recursive descent. These techniques can be used whenever all rules defining
the same nonterminal have disjoint selection sets. We then define translation
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grammars, which are capable of specifying output, and attributed grammars,
in which it is possible for information to be passed from one grammar rule to
another during the parse.

After learning how to apply these techniques to context-free grammars, we
turn our attention to grammars for programming languages. In particular, we
devise an attributed translation grammar for arithmetic expressions which can
be parsed top down. In addition, we look at an attributed translation grammar
for some of the common control structures: while, for, and if-else.

Finally, we examine a top down parser for our case study language: Decaf.
This parser is written as a recursive descent parser in Java, and makes use of
SableCC for the lexical scanner. In the interest of keeping costs down, it is not
shown in the appendix; however, it is available along with the other software
files at http://www.rowan.edu/~bergmann/books.

http://www.rowan.edu/~bergmann/books


Chapter 5

Bottom Up Parsing

The implementation of parsing algorithms for LL(1) grammars , as shown in
Chapter 4, is relatively straightforward. However, there are many situations in
which it is not easy, if possible, to use an LL(1) grammar. In these cases, the
designer may have to use a bottom up algorithm.

Parsing algorithms which proceed from the bottom of the derivation tree
and apply grammar rules (in reverse) are called bottom up parsing algorithms.
These algorithms will begin with an empy stack. One or more input symbols
are moved onto the stack, which are then replaced by nonterminals according to
the grammar rules. When all the input symbols have been read, the algorithm
terminates with the starting nonterminal alone on the stack, if the input string
is acceptable. The student may think of a bottom up parse as being similar
to a derivation in reverse. Each time a grammar rule is applied to a sentential
form, the rewriting rule is applied backwards. Consequently, derivation trees
are constructed, or traversed, from bottom to top.

5.1 Shift Reduce Parsing

Bottom up parsing involves two fundamental operations. The process of mov-
ing an input symbol to the stack is called a shift operation, and the process
of replacing symbols on the top of the stack with a nonterminal is called a re-
duce operation (it is a derivation step in reverse). Most bottom up parsers are
called shift reduce parsers because they use these two operations. The following
grammar will be used to show how a shift reduce parser works:

G22:

1. S → S a B
2. S → c
3. B → a b

A derivation tree for the string caabaab is shown in Figure 5.1. The shift reduce
parser will proceed as follows: each step will be either a shift (shift an input

164
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c

S a

a b

B

S a

a b

B

S

Figure 5.1: Derivation tree for the string caabaab using grammar G22

symbol to the stack) or reduce (reduce symbols on the stack to a nonterminal),
in which case we indicate which rule of the grammar is being applied. The
sequence of stack frames and input is shown in Figure 5.2, in which the stack
frames are pictured horizontally to show, more clearly, the shifting of input
characters onto the stack and the sentential forms corresponding to this parse.
The algorithm accepts the input if the stack can be reduced to the starting
nonterminal when all of the input string has been read.

Note in Figure 5.2 that whenever a reduce operation is performed, the sym-
bols being reduced are always on top of the stack. The string of symbols being
reduced is called a handle , and it is imperative in bottom up parsing that the
algorithm be able to find a handle whenever possible. The bottom up parse
shown in Figure 5.2 corresponds to the derivation shown below:

S ⇒ SaB ⇒ Saab⇒ SaBaab⇒ Saabaab⇒ caabaab

Note that this is a right-most derivation; shift reduce parsing will always
correspond to a right-most derivation. In this derivation we have underlined
the handle in each sentential form. Read this derivation from right to left and
compare it with Figure 5.2.

If the parser for a particular grammar can be implemented with a shift reduce
algorithm, we say the grammar is LR (the L indicates we are reading input
from the left, and the R indicates we are finding a right-most derivation). The
shift reduce parsing algorithm always performs a reduce operation when the top
of the stack corresponds to the right side of a rule. However, if the grammar
is not LR, there may be instances where this is not the correct operation, or
there may be instances where it is not clear which reduce operation should be
performed. For example, consider grammar G23:

G23:
1. S → SaB
2. S → a
3. B → ab

When parsing the input string aaab, we reach a point where it appears that
we have a handle on top of the stack (the terminal a), but reducing that handle,
as shown in Figure 5.3, does not lead to a correct bottom up parse. This is called
a shift/reduce conflict because the parser does not know whether to shift an
input symbol or reduce the handle on the stack. This means that the grammar
is not LR, and we must either rewrite the grammar or use a different parsing
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, caabaab  

shift
,c aabaab  

reduce using rule 2
,S aabaab  

shift
,Sa abaab  

shift
,Saa baab  

shift
,Saab aab  

reduce using rule 3
,SaB aab  

reduce using rule 1
,S aab  

shift
,Sa ab  

shift
,Saa b  

shift
,Saab   

reduce using rule 3
,SaB   

reduce using rule 1
,S   

Accept

Figure 5.2: Sequence of stack frames parsing caabaab using grammar G22



5.1. SHIFT REDUCE PARSING 167

∇ aaab ↵

shift

∇ a aab ↵

reduce using rule 2

∇ s aab ↵

shift

∇ Sa ab ↵

shift/reduce conflict

reduce using rule 2 (incorrect)

∇ SS ab ↵

shift

∇ Ssa b ↵

shift

∇ Ssab ↵

reduce using rule 3

∇ SSb ↵

Syntax error (incorrect)

Figure 5.3: An example of a shift/reduce conflict leading to an incorrect parse
using grammar G23

algorithm.

Another problem in shift reduce parsing occurs when it is clear that a reduce
operation should be performed, but there is more than one grammar rule whose
right hand side matches the top of the stack, and it is not clear which rule
should be used. This is called a reduce/reduce conflict. Grammar G24 is an
example of a grammar with a reduce/reduce conflict.

G24:
1. S → SA
2. S → a
3. A → a

Figure 5.4 shows an attempt to parse the input string aa with the shift reduce
algorithm, using grammar G24. Note that we encounter a reduce/reduce conflict
when the handle a is on the stack because we don’t know whether to reduce
using rule 2 or rule 3. If we reduce using rule 2, we will get a correct parse, but
if we reduce using rule 3 we will get an incorrect parse.

It is often possible to resolve these conflicts simply by making an assumption.
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∇ aa ↵

shift

∇ a a ↵

reduce/reduce conflict (rules 2 and 3)

reduce using rule 3 (incorrect)

∇ A a ↵

shift

∇ Aa ↵

reduce/reduce conflict (rules 2 and 3)

reduce using rule 2 (rule 3 will also yield a syntax error)

∇ AS ↵

Syntax error

Figure 5.4: A reduce/reduce conflict using grammar G24

For example, all shift/reduce conflicts could be resolved by shifting rather than
reducing. If this assumption always yields a correct parse, there is no need to
rewrite the grammar.

In examples like the two just presented, it is possible that the conflict can be
resolved by looking ahead at additional input characters. An LR algorithm that
looks ahead k input symbols is called LR(k). When implementing programming
languages bottom up, we generally try to define the language with an LR(1)
grammar, in which case the algorithm will not need to look ahead beyond the
current input symbol. An ambiguous grammar is not LR(k) for any value of k
i.e. an ambiguous grammar will always produce conflicts when parsing bottom
up with the shift reduce algorithm. For example, the following grammar for if
statements is ambiguous:

1. Stmt → if (BoolExpr) Stmt else Stmt
2. Stmt → if (BoolExpr) Stmt

The BoolExpr in parentheses represents a true or false condition. Fig-
ure 5.5 shows two different derivation trees for the statement if (BoolExpr)

if (BoolExpr) Stmt else Stmt. The tree on the right is the interpretation
preferred by most programming languages (each else is matched with the closest
preceding unmatched if). The parser will encounter a shift/reduce conflict when
reading the else. The reason for the conflict is that the parser will be configured
as shown in Figure 5.6.

In this case, the parser will not know whether to treat if (BoolExpr) Stmt
as a handle and reduce it to Stmt according to rule 2, or to shift the else, which
should be followed by a Stmt, thus reducing according to rule 1. However, if
the parser can somehow be told to resolve this conflict in favor of the shift, then
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if ( BoolExpr )

if ( BoolExpr ) Stmt

Stmt else Stmt

Stmt

if ( BoolExpr )

if ( BoolExpr ) Stmt else Stmt

Stmt

Stmt

Figure 5.5: Two derivation trees for if (BoolExpr) if (BoolExpr) Stmt

else Stmt

Stack    Input

∇ . . .  if ( BoolExpr ) Stmt else . . . ↵

Figure 5.6: Parser configuration before reading the else part of an if statement

it will always find the correct interpretation. Alternatively, the ambiguity may
be removed by rewriting the grammar, as shown in section 3.1.

Sample Problem 5.1.1

Show the sequence of stack and input configurations as the string
caab is parsed with a shift reduce parser, using grammar G22.

Solution:
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∇ caab ↵

shift

∇ c aab ↵

reduce using rule 2

∇ S aab ↵

shift

∇ Sa ab ↵

shift

∇ Saa b ↵

shift

∇ Saab ↵

reduce using rule 3

∇ SaB ↵

reduce using rule 1

∇ S ↵

Accept

5.1.1 Exercises

1. For each of the following stack configurations, identify the handle using
the grammar shown below:

1. S → S A b
2. S → a c b
3. A → b B c
4. A → b c
5. B → b a
6. B → A c

(a) ▽ SSAb

(b) ▽ SSbbc

(c) ▽ SbBc
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(d) ▽ Sbbc

2. Using the grammar of Problem 1, show the sequence of stack and input
configurations as each of the following strings is parsed with shift reduce
parsing:

(a) acb

(b) acbbcb

(c) acbbbacb

(d) acbbbcccb

(e) acbbcbbcb

3. For each of the following input strings, indicate whether a shift/reduce
parser will encounter a shift/reduce conflict, a reduce/reduce conflict, or
no conflict when parsing, using the grammar below:

1. S → S a b
2. S → b A
3. A → b b
4. A → b A
5. A → b b c
6. A → c

(a) b c

(b) b b c a b

(c) b a c b

4. Assume that a shift/reduce parser always chooses the lower numbered rule
(i.e., the one listed first in the grammar) whenever a reduce/reduce con-
flict occurs during parsing, and it chooses a shift whenever a shift/reduce
conflict occurs. Show a derivation tree corresponding to the parse for the
sentential form if (BoolExpr) if (BoolExpr) Stmt else Stmt, using
the following ambiguous grammar. Since the grammar is not complete,
you may have nonterminal symbols at the leaves of the derivation tree.
1. Stmt → if (BoolExpr) Stmt else Stmt
2. Stmt → if (BoolExpr) Stmt

5.2 LR Parsing With Tables

One way to implement shift reduce parsing is with tables that determine whether
to shift or reduce, and which grammar rule to reduce. This technique makes
use of two tables to control the parser. The first table, called the action table,
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determines whether a shift or reduce is to be invoked. If it specifies a reduce,
it also indicates which grammar rule is to be reduced. The second table, called
a goto table, indicates which stack symbol is to be pushed on the stack after
a reduction. A shift action is implemented by a push operation followed by an
advance input operation. A reduce action must always specify the grammar
rule to be reduced. The reduce action is implemented by a Replace operation
in which stack symbols on the right side of the specified grammar rule are
replaced by a stack symbol from the goto table (the input pointer is retained).
The symbol pushed is not necessarily the nonterminal being reduced, as shown
below. In practice, there will be one or more stack symbols corresponding to
each nonterminal.

The columns of the goto table are labeled by nonterminals, and the the rows
are labeled by stack symbols. A cell of the goto table is selected by choosing
the column of the nonterminal being reduced and the row of the stack symbol
just beneath the handle.

For example, suppose we have the following stack and input configuration:

Stack Input

▽ S ab←֓

in which the bottom of the stack is to the left. The action shift will result in
the following configuration:

Stack Input

▽ Sa b←֓

The a has been shifted from the input to the stack. Suppose, then, that in
the grammar, rule 7 is:

7. B → Sa
Select the row of the goto table labeled ▽ and the column labeled B. If the

entry in this cell is push X, then the action reduce 7 would result in the following
configuration:

Stack Input

▽ X b←֓

Figure 5.7 shows the LR parsing tables for grammar G5 for arithmetic
expressions involving only addition and multiplication (see section 3.1). As in
previous pushdown machines, the stack symbols label the rows, and the input
symbols label the columns of the action table. The columns of the goto table
are labeled by the nonterminal being reduced. The stack is initialized with a
▽ symbol to mark the bottom of the statck, and blank cells in the action table
indicate syntax errors in the input string. Figure 5.8 shows the sequence of
configurations which would result when these tables are used to parse the input
string (var+var)*var.
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    A c t i o n     T a b l e

+ * ( ) var
N

,

shift ( shift var

Expr1 shift + Accept

Term1 reduce 1 shift * reduce 1 reduce 1

Factor3 reduce 3 reduce 3 reduce 3 reduce 3

( shift ( shift var

Expr5 shift + shift )

) reduce 5 reduce 5 reduce 5 reduce 5

+ shift ( shift var

Term2 reduce 2 shift * reduce 2 reduce 2

* shift ( shift var

Factor4 reduce 4 reduce 4 reduce 4 reduce 4

var reduce 6 reduce 6 reduce 6 reduce 6

G o T o   T a b l e

Expr Term Factor

, push Expr1 push Term2 push Factor4

Expr1

Term1

Factor3

( push Expr5 push Term2 push Factor4

Expr5 ,

)

+ push Term1 push Factor4 Initial

Term2 Stack

* push Factor3

Factor4

var

Figure 5.7: Action and Goto tables to parse simple arithmetic expressions
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Stack Input Action Goto

,

(var+var)*var N

shift (

,( var+var)*var N

shift var

,(var +var)*var N

reduce 6 push Factor4
,(Factor4 +var)*var N

reduce 4 push Term2
,(Term2 +var)*var N

reduce 2 push Expr5
,(Expr5 +var)*var N

shift +

,(Expr5+ var)*var N

shift var

,(Expr5+var )*var N

reduce 6 push Factor4
,(Expr5+Factor4 )*var N

reduce 4 push Term1
,(Expr5+Term1 )*var N

reduce 1 push Expr5

,(Expr5 )*var N

shift )

,(Expr5) *var N

reduce 5 push Factor4
,Factor4 *var N

reduce 4 push Term2

,Term2 *var N

shift *

,Term2* var N

shift var

,Term2*var
N

reduce 6 push Factor3

,Term2*Factor3
N

reduce 3 push Term2

,Term2
N

reduce 2 push Expr1

,Expr1
N

Accept

Figure 5.8: Sequence of configurations when parsing (var+var)*var
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G5:
1. Expr → Expr + Term
2. Expr → Term
3. Term → Term * Factor
4. Term → Factor
5. Factor → ( Expr )
6. Factor → var

The operation of the LR parser can be described as follows:

1. Find the action corresponding to the current input and the top stack symbol.

2. If that action is a shift action:

a. Push the input symbol onto the stack.

b. Advance the input pointer.

3. If that action is a reduce action:

a. Find the grammar rule specified by the reduce action.

b. The symbols on the right side of the rule should also be on the top of the

stack -- pop them all off the stack.

c. Use the nonterminal on the left side of the grammar rule to indicate a

column of the goto table, and use the top stack symbol to indicate a row

of the goto table. Push the indicated stack symbol onto the stack.

d. Retain the input pointer.

4. If that action is blank, a syntax error has been detected.

5. If that action is Accept, terminate.

6. Repeat from step 1.

Sample Problem 5.2.1

Show the sequence of stack, input, action, and goto configurations
for the input var*var using the parsing tables of Figure 5.7.

Solution:
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Stack Input Action Goto

,

var*var N

shift var

,var *var N

reduce 6 push Factor4
,Factor4 *var N

reduce 4 push Term2
,Term2 *var N

shift *

,Term2* var N

shift var

,Term2*var
N

reduce 6 push Factor3
,Term2*Factor3

N

reduce 3 push Term2
,Term2

N

reduce 2 push Expr1
,Expr1

N

Accept

There are three principle techniques for constructing the LR parsing tables.
In order from simplest to most complex or general, they are called: Simple LR
(SLR), Look Ahead LR (LALR), and Canonical LR (LR). SLR is the easiest
technique to implement, but works for a small class of grammars. LALR is
more difficult and works on a slightly larger class of grammars. LR is the most
general, but still does not work for all unambiguous context free grammars. In
all cases, they find a rightmost derivation when scanning from the left (hence
LR). These techniques are beyond the scope of this text, but are described in
Parsons [17] and Aho et. al. [1].

5.2.1 Exercises

1. Show the sequence of stack and input configurations and the reduce and
goto operations for each of the following expressions, using the action and
goto tables of Figure 5.7.

(a) var

(b) (var)

(c) var + var * var

(d) (var*var) + var

(e) (var * var
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5.3 SableCC

For many grammars, the LR parsing tables can be generated automatically from
the grammar. There are several software systems designed to generate a parser
automatically from specifications (as mentioned in section 2.4). In this chapter
we will be using software developed at McGill University, called SableCC.

5.3.1 Overview of SableCC

SableCC is described well in the thesis of its creator, Etienne Gagnon [10] (see
www.sablecc.org). The user of SableCC prepares a grammar file, as described
in section 2.4, as well as two java classes: Translation and Compiler. These are
stored in the same directory as the parser, lexer, node, and analysis directories.
Using the grammar file as input, SableCC generates java code the purpose of
which is to compile source code as specified in the grammar file. SableCC
generates a lexer and a parser which will produce an abstract syntax tree as
output. If the user wishes to implement actions with the parser, the actions
are specified in the Translation class. An overview of this software system is
presented in Figure 5.9.

5.3.2 Structure of the SableCC Source Files

The input to SableCC is called a grammar file. This file contains the specifica-
tions for lexical tokens, as well as syntactic structures (statements, expressions,
...) of the language for which we wish to construct a compiler. Neither actions
nor attributes are included in the grammar file. There are six sections in the
grammar file:

1. Package

2. Helpers

3. States

4. Tokens

5. Ignored Tokens

6. Productions

The first four sections were described in section 2.4. The Ignored Tokens

section gives you an opportunity to specify tokens that should be ignored by the
parser (typically white space and comments). The Productions section contains
the grammar rules for the language being defined. This is where syntactic
structures such as statements, expressions, etc. are defined. Each definition
consists of the name of the syntactic type being defined (i.e. a nonterminal), an
equal sign, an EBNF definition, and a semicolon to terminate the production.
As mentioned in section 2.4, all names in this grammar file must be lower case.
An example of a production defining a while statement is shown below (l par
and r par are left parenthesis and right parenthesis tokens, respectively):

stmt = while l par bool expr r par stmt ;
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language.grammar 

parser lexer analysis node 

sablecc 

Translation.java 

javac 

Translation.class 

Compiler.java 

javac 

Compiler.class 

Figure 5.9: Generation and compilation of a compiler using SableCC
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Note that the semicolon at the end is not the token for a semicolon, but a
terminator for the stmt rule. Productions may use EBNF-like constructs. If x
is any grammar symbol, then:

x? // An optional x (0 or 1 occurrences of x)

x* // 0 or more occurrences of x

x+ // 1 or more occurrences of x

Alternative definitions, using |, are also permitted. However, alternatives
must be labeled with names enclosed in braces. The following defines an argu-
ment list as 1 or more identifiers, separated with commas:

arg_list = {single} identifier

| {multiple} identifier ( comma identifier ) +

;

The names single and multiple enable the user to refer to one of these al-
ternatives when applying actions in the Translation class. Labels must also be
used when two identical names appear in a grammar rule. Each item label must
be enclosed in brackets, and followed by a colon:

for_stmt = for l_par [init]: assign_expr semi bool_expr

semi [incr]: assign_expr r_par stmt ;

Since there are two occurrences of assign expr in the above definition of a
for statement, they must be labeled. The first is labeled init, and the second
is labeled incr.

5.3.3 An Example Using SableCC

The purpose of this example is to translate infix expressions involving addition,
subtraction, multiplication, and division into postfix expressions, in which the
operations are placed after both operands. Note that parentheses are never
needed in postfix expressions, as shown in the following examples:

Infix Postfix

2 + 3 * 4 2 3 4 * +

2 * 3 + 4 2 3 * 4 +

( 2 + 3 ) * 4 2 3 + 4 *

2 + 3 * ( 8 - 4 ) - 2 2 3 8 4 - * + 2 -

There are four sections in the grammar file for this program. The first section
specifies that the package name is ’postfix’. All java software for this program
will be part of this package. The second section defines the tokens to be used.
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No Helpers are needed, since the numbers are simple whole numbers, specified
as one or more digits. The third section specifies that blank (white space)
tokens are to be ignored; this includes tab characters and newline characters.
Thus the user may input infix expressions in free format. The fourth section,
called Productions, defines the syntax of infix expressions. It is similar to the
grammar given in section 3.1, but includes subtraction and division operations.
Note that each alternative definition for a syntactic type must have a label in
braces. The grammar file is shown below:

Package postfix;

Tokens

number = [’0’..’9’]+;

plus = ’+’;

minus = ’-’;

mult = ’*’;

div = ’/’;

l\_par = ’(’;

r\_par = ’)’;

blank = (’ ’ | 10 | 13 | 9)+ ;

semi = ’;’ ;

Ignored Tokens

blank;

Productions

expr =

{term} term |

{plus} expr plus term |

{minus} expr minus term

;

term =

{factor} factor |

{mult} term mult factor |

{div} term div factor

;

factor =

{number} number |

{paren} l_par expr r_par

;

Now we wish to include actions which will put out postfix expressions.
SableCC will produce parser software which will create an abstract syntax tree
for a particular infix expression, using the given grammar. SableCC will also
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produce a class called DepthFirstAdapter, which has methods capable of visiting
every node in the syntax tree. In order to implement actions, all we need to do
is extend DepthFirstAdapter (the extended class is usually called Translation),
and override methods corresponding to rules (or tokens) in our grammar. For
example, since our grammar contains an alternative, Mult, in the definition of
Term, the DepthFirstAdapter class contains a method named outAMultTerm.
It will have one parameter which is the node in the syntax tree corresponding
to the Term. Its signature is

public void outAMultTerm (AMultTerm node)

This method will be invoked when this node in the syntax tree, and all its
descendants, have been visited in a depth-first traversal. In other words, a Term,
consisting of a Term, a mult (i.e. a ’*’), and a Factor have been successfully
scanned. To include an action for this rule, all we need to do is override the
outAMultTerm method in our extended class (Translation). In our case we want
to print out a ’+’ after scanning a ’+’ and both of its operands. This is done by
overriding the outAPlusExpr method. When do we print out a number? This
is done when a number is seen in the {number} alternative of the definition of
factor. Therefore, override the method outANumberFactor. In this method all
we need to do is print the parameter node (all nodes have toString() methods,
and therefore can be printed). The Translation class is shown below:

package postfix;

import postfix.analysis.*; // needed for DepthFirstAdapter

import postfix.node.*; // needed for syntax tree nodes.

class Translation extends DepthFirstAdapter

{

public void outAPlusExpr(APlusExpr node)

{// out of alternative {plus} in expr, we print the plus.

System.out.print ( " + ");

}

public void outAMinusExpr(AMinusExpr node)

{// out of alternative {minus} in expr, we print the minus.

System.out.print ( " - ");

}

public void outAMultTerm(AMultTerm node)

{// out of alternative {mult} in term, we print the minus.

System.out.print ( " * ");

}

public void outADivTerm(ADivTerm node)

{// out of alternative {div} in term, we print the minus.

System.out.print ( " / ");
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}

public void outANumberFactor (ANumberFactor node)

// out of alternative {number} in factor, we print the number.

{ System.out.print (node + " "); }

}

There are other methods in the DepthFirstAdapter class which may also be
overridden in the Translation class, but which were not needed for this example.
They include the following:

• There is an ’in’ method for each alternative, which is invoked when a node
is about to be visited. In our example, this would include the method
public void inAMultTerm (AMultTerm node)

• There is a ’case’ method for each alternative. This is the method that visits
all the descendants of a node, and it is not normally necessary to over-
ride this method. An example would be public void caseAMultTerm

(AMultTerm node)

• There is also a ’case’ method for each token; the token name is prefixed
with a ’T’ as shown below:

public void caseTNumber (TNumber token)

{ // action for number tokens }

An important problem to be addressed is how to invoke an action in the
middle of a rule (an embedded action). Consider the while statement definition:

while stmt = {while} while l par bool expr r par stmt ;

Suppose we wish to put out a LBL atom after the while keyword token is
seen. There are two ways to do this. The first way is to rewrite the grammar,
and include a new nonterminal for this purpose (here we call it while token):

while_stmt = {while} while_token l_par

bool_expr r_par stmt ;

while_token = while ;

Now the method to be overridden could be:

public void outAWhileToken (AWhileToken node)

{ System.out.println ("LBL") ; } // put out a LBL atom.
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The other way to solve this problem would be to leave the grammar as is
and override the case method for this alternative. The case methods have not
been explained in full detail, but all the user needs to do is to copy the case
method from DepthFirstAdapter, and add the action at the appropriate place.
In this example it would be:

public void caseAWhileStmt (AWhileStmt node)

{ inAWhileStmt(node);

if(node.getWhile() != null)

{ node.getWhile().apply(this) }

///////////// insert action here //////////////////

System.out.println ("LBL"); // embedded action

///////////////////////////////////////////////////

if(node.getLPar() != null)

{ node.getLPar().apply(this); }

if(node.getBoolExpr() != null)

{ node.getBoolExpr().apply(this); }

if(node.getRPar() != null)

{ node.getRPar().apply(this); }

if (node.getStmt() != null)

{ node.getStmt().apply (this) ; }

outAWhileStmt (node);

}

The student may have noticed that SableCC tends to alter names that were
included in the grammar. This is done to prevent ambiguities. For example,
l par becomes LPar, and bool expr becomes BoolExpr.

In addition to a Translation class, we also need a Compiler class. This is the
class which contains the main method, which invokes the parser. The Compiler
class is shown below:

package postfix;

import postfix.parser.*;

import postfix.lexer.*;

import postfix.node.*;

import java.io.*;

public class Compiler

{

public static void main(String[] arguments)

{ try

{ System.out.println("Type one expression");

// Create a Parser instance.
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Parser p = new Parser

( new Lexer

( new PushbackReader

( new InputStreamReader(System.in), 1024)));

// Parse the input.

Start tree = p.parse();

// Apply the translation.

tree.apply(new Translation());

System.out.println();

}

catch(Exception e)

{ System.out.println(e.getMessage()); }

}

}

This completes our example on translating infix expressions to postfix. The
source code is available at http://www.rowan.edu/~bergmann/books. In sec-
tion 2.3 we discussed the use of hash tables in lexical analysis. Here again
we make use of hash tables, this time using the Java class HashMap (from
java.util). This is a general storage-lookup table for any kind of objects. Use
the put method to store an object, with a key:

void put (Object key, Object value);

and use the get method to retrieve a value from the table:

Object get (Object key)

Sample Problem 5.3.1

Use SableCC to translate infix expressions involving addition,
subtraction, multiplication, and division of whole numbers into atoms.
Assume that each number is stored in a temporary memory location
when it is encountered. For example, the following infix expression:

34 + 23 * 8 - 4

should produce the list of atoms:

MUL T2 T3 T4

ADD T1 T4 T5

SUB T5 T6 T7

http://www.rowan.edu/~bergmann/books
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Here it is assumed that 34 is stored in T1, 23 is stored in T2, 8
is stored in T3, and 4 is stored in T6.

Solution:

Since we are again dealing with infix expressions, the grammar
given in this section may be reused. Simply change the package name
to exprs.

The Compiler class may also be reused as is. All we need to do
is rewrite the Translation class.

To solve this problem we will need to allocate memory locations
for sub-expressions and remember where they are. For this purpose
we use a java Map. A Map stores key-value pairs, where the key
may be any object, and the value may be any object. Once a value
has been stored (with a put method), it can be retrieved with its key
(using the get method). In our Map, the key will always be a Node,
and the value will always be an Integer. The Translation class is
shown below:

package exprs;

import exprs.analysis.*;

import exprs.node.*;

import java.util.*; // for Hashtable

import java.io.*;

class Translation extends DepthFirstAdapter

{

// Use a Map to store the memory locations for exprs

// Any node may be a key, its memory location will be the

// value, in a (key,value) pair.

Map <Node, Integer> hash = new HashMap <Node, Integer>();

public void caseTNumber(TNumber node)

// Allocate memory loc for this node, and put it into

// the map.

{ hash.put (node, alloc()); }

public void outATermExpr (ATermExpr node)

{ // Attribute of the expr same as the term

hash.put (node, hash.get(node.getTerm()));

}
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public void outAPlusExpr(APlusExpr node)

{// out of alternative {plus} in Expr, we generate an

// ADD atom.

int i = alloc();

hash.put (node, i);

atom ("ADD", (Integer)hash.get(node.getExpr()),

(Integer)hash.get(node.getTerm()), i);

}

public void outAMinusExpr(AMinusExpr node)

{// out of alternative {minus} in Expr,

// generate a minus atom.

int i = alloc();

hash.put (node, i);

atom ("SUB", (Integer)hash.get(node.getExpr()),

(Integer)hash.get(node.getTerm()), i);

}

public void outAFactorTerm (AFactorTerm node)

{ // Attribute of the term same as the factor

hash.put (node, hash.get(node.getFactor()));

}

public void outAMultTerm(AMultTerm node)

{// out of alternative {mult} in Factor, generate a mult

// atom.

int i = alloc();

hash.put (node, i);

atom ("MUL", (Integer)hash.get(node.getTerm()),

(Integer) hash.get(node.getFactor()) , i);

}

public void outADivTerm(ADivTerm node)

{// out of alternative {div} in Factor,

// generate a div atom.

int i = alloc();

hash.put (node, i);

atom ("DIV", (Integer) hash.get(node.getTerm()),

(Integer) hash.get(node.getFactor()), i);

}

public void outANumberFactor (ANumberFactor node)

{ hash.put (node, hash.get (node.getNumber())); }

public void outAParenFactor (AParenFactor node)
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{ hash.put (node, hash.get (node.getExpr())); }

void atom (String atomClass, Integer left, Integer right,

Integer result)

{ System.out.println (atomClass + " T" + left + " T" +

right + " T" + result);

}

static int avail = 0;

int alloc()

{ return ++avail; }

}

5.3.4 Exercises

1. Which of the following input strings would cause this SableCC program
to produce a syntax error message?

Tokens

a = ’a’;

b = ’b’;

c = ’c’;

newline = [10 + 13];

Productions

line = s newline ;

s = {a1} a s b

| {a2} b w c

;

w = {a1} b w b

| {a2} a c

;

(a) bacc (b) ab (c) abbacbcb (d) bbacbc (e) bbacbb

2. Using the SableCC program from problem 1, show the output produced
by each of the input strings given in Problem 1, using the Translation
class shown below.
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package ex5_3;

import ex5_3.analysis.*;

import ex5_3.node.*;

import java.util.*;

import java.io.*;

class Translation extends DepthFirstAdapter

{

public void outAA1S (AA1S node)

{ System.out.println ("rule 1"); }

public void outAA2S (AA2S node)

{ System.out.println ("rule 2"); }

public void outAA1W (AA1W node)

{ System.out.println ("rule 3"); }

public void outAA2W (AA2W node)

{ System.out.println ("rule 4"); }

}

3. A Sexpr is an atom or a pair of Sexprs enclosed in parentheses and sepa-
rated with a period. For example, if A, B, C, ...Z and NIL are all atoms,
then the following are examples of Sexprs:

A (A.B) ((A.B).(B.C)) (A.(B.(C.NIL)))

A List is a special kind of Sexpr. A List is the atom NIL or a List is a
dotted pair of Sexprs in which the first part is an atom or a List and the
second part is a List. The following are examples of lists:

NIL (A.NIL) ((A.NIL).NIL) ((A.NIL).(B.NIL)) (A.(B.(C.NIL)))

(a) Show a SableCC grammar that defines a Sexpr.

(b) Show a SableCC grammar that defines a List.

(c) Add a Translation class to your answer to part (b) so that it will print
out the total number of atoms in a List. For example:

((A.NIL).(B.(C.NIL))) 5 atoms

4. Use SableCC to implement a syntax checker for a typical database com-
mand language. Your syntax checker should handle at least the following
kinds of commands:

RETRIEVE employee_file

PRINT
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DISPLAY FOR salary >= 1000000

PRINT FOR "SMITH" = lastname

5. The following SableCC grammar and Translation class are designed to
implement a simple desk calculator with the standard four arithmetic
functions (it uses floating-point arithmetic only). When compiled and
run, the program will evaluate a list of arithmetic expressions, one per
line, and print the results. For example:

2+3.2e-2

2+3*5/2

(2+3)*5/2

16/(2*3 - 6*1.0)

2.032

9.5

12.5

infinity

Unfortunately, the grammar and Java code shown below are incorrect.
There are four mistakes, some of which are syntactic errors in the gram-
mar; some of which are syntactic Java errors; some of which cause run-time
errors; and some of which don’t produce any error messages, but do pro-
duce incorrect output. Find and correct all four mistakes. If possible, use
a computer to help debug these programs.

The grammar, exprs.grammar is shown below:

Package exprs;

Helpers

digits = [’0’..’9’]+ ;

exp = [’e’ + ’E’] [’+’ + ’-’]? digits ;

Tokens

number = digits ’.’? digits? exp? ;

plus = ’+’;

minus = ’-’;

mult = ’*’;

div = ’/’;

l_par = ’(’;

r_par = ’)’;

newline = [10 + 13] ;

blank = (’ ’ | ’t’)+;

semi = ’;’ ;

Ignored Tokens
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blank;

Productions

exprs = expr newline

| exprs embed

;

embed = expr newline;

expr =

{term} term |

{plus} expr plus term |

{minus} expr minus term

;

term =

{factor} factor |

{mult} term mult factor |

{div} term div factor |

;

factor =

{number} number |

{paren} l_par expr r_par

;

The Translation class is shown below:

package exprs;

import exprs.analysis.*;

import exprs.node.*;

import java.util.*;

class Translation extends DepthFirstAdapter

{

Map <Node, Integer> hash =

new HashMap <Node, Integer> (); // store expr values

public void outAE1Exprs (AE1Exprs node)

{ System.out.println (" " + getVal (node.getExpr())); }

public void outAEmbed (AEmbed node)

{ System.out.println (" " + getVal (node.getExpr())); }

public void caseTNumber(TNumber node)

{ hash.put (node, new Double (node.toString())) ; }

public void outAPlusExpr(APlusExpr node)
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{// out of alternative {plus} in Expr, we add the

// expr and the term

hash.put (node, new Double (getPrim (node.getExpr())

+ getPrim(node.getTerm())));

}

public void outAMinusExpr(AMinusExpr node)

{// out of alternative {minus} in Expr, subtract the term

// from the expr

hash.put (node, new Double (getPrim(node.getExpr())

- getPrim(node.getTerm())));

}

public void outAFactorTerm (AFactorTerm node)

{ // Value of the term same as the factor

hash.put (node, getVal(node.getFactor())) ;

}

public void outAMultTerm(AMultTerm node)

{// out of alternative {mult} in Factor, multiply the term

// by the factor

hash.put (node, new Double (getPrim(node.getTerm())

* getPrim(node.getFactor())));

}

public void outADivTerm(ADivTerm node)

{// out of alternative {div} in Factor, divide the term by

// the factor

hash.put (node, new Double (getPrim(node.getTerm())

/ getPrim(node.getFactor())));

}

public void outANumberFactor (ANumberFactor node)

{ hash.put (node, getVal (node.getNumber())); }

public void outAParenFactor (AParenFactor node)

{ hash.put (node, new Double (0.0)); }

double getPrim (Node node)

{ return ((Double) hash.get (node)).doubleValue(); }

Double getVal (Node node)

{ return hash.get (node) ; }

}
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6. Show the SableCC grammar which will check for proper syntax of regular
expressions over the alphabet {0,1}. Observe the precedence rules for the
three operations. Some examples are shown:

Valid Not Valid

(0+1)*.1.1 *0

0.1.0* (0+1)+1)

((0)) 0+

5.4 Arrays

Although arrays are not included in our definition of Decaf, they are of such
great importance to programming languages and computing in general, that we
would be remiss not to mention them at all in a compiler text. We will give a
brief description of how multi-dimensional array references can be implemented
and converted to atoms, but for a more complete and efficient implementation
the student is referred to Parsons [17] or Aho et. al. [1].

The main problem that we need to solve when referencing an array element
is that we need to compute an offset from the first element of the array. Though
the programmer may be thinking of multi-dimensional arrays (actually arrays
of arrays) as existing in two, three, or more dimensions, they must be physically
mapped to the computer’s memory, which has one dimension. For example, an
array declared as int n[][][] = new int [2][3][4];might be envisioned by
the programmer as a structure having three rows and four columns in each of
two planes as shown in Figure 5.10 (a). In reality, this array is mapped into
a sequence of twenty-four (2*3*4) contiguous memory locations as shown in
Figure 5.10 (b). The problem which the compiler must solve is to convert an
array reference such as n[1][1][0] to an offset from the beginning of the storage
area allocated for n. For this example, the offset would be sixteen memory cells
(assuming that each element of the array occupies one memory cell).

To see how this is done, we will begin with a simple one-dimensional array
and then proceed to two and three dimensions. For a vector, or one-dimensional
array, the offset is simply the subscripting value, since subscripts begin at 0 in
Java. For example, if v were declared to contain twenty elements, char v[] =

new char[20];, then the offset for the fifth element, v[4], would be 4, and in
general the offset for a reference v[i] would be i. The simplicity of this formula
results from the fact that array indexing begins with 0 rather than 1. A vector
maps directly to the computer’s memory.

Now we introduce arrays of arrays, which, for the purposes of this discussion,
we call multi-dimensional arrays; suppose m is declared as a matrix, or two-
dimensional array, char m[][] = new char [10][15];. We are thinking of
this as an array of 10 rows, with 15 elements in each row. A reference to an
element of this array will compute an offset of fifteen elements for each row after
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Figure 5.10: A three-dimensional array n[2][3][4] (a) Mapped into a one-
dimensional memory (b).

the first. Also, we must add to this offset the number of elements in the selected
row. For example, a reference to m[4][7] would require an offset of 4*15 + 7 =
67. The reference m[r][c] would require an offset of r*15 + c. In general, for
a matrix declared as char m[][] = new char [ROWS][ COLS], the formula
for the offset of m[r][c] is r*COLS + c.

For a three-dimensional array, char a[][][] = new char [5][6][7];, we must sum
an offset for each plane (6*7 elements), an offset for each row (7 elements), and
an offset for the elements in the selected row. For example, the offset for the ref-
erence a[2][3][4] is found by the formula 2*6*7 + 3*7 + 4. The reference a[p][r][c]
would result in an offset computed by the formula p*6*7 + r*7 + c. In general,
for a three-dimensional array, new char [PLANES][ROWS][COLS], the reference
a[p][r][c] would require an offset computed by the formula p*ROWS*COLS +
r*COLS + c.

We now generalize what we have done to an array that has any number of
dimensions. Each subscript is multiplied by the total number of elements in all
higher dimensions. If an n dimensional array is declared as char a[][]...[]

= new char[D1][D2][D3]...[Dn], then a reference to a[S1][S2][S3]...[Sn]

will require an offset computed by the following formula:

S1*D2*D3*D4*...*Dn + S2*D3*D4*...*Dn + S3*D4*...*Dn + ... + Sn−1*Dn

+ Sn.

In this formula, Di represents the number of elements in the ith dimension
and Si represents the ith subscript in a reference to the array. Note that in some
languages, such as Java and C, all the subscripts are not required. For example,
the array of three dimensions a[2][3][4], may be referenced with two, one, or
even zero subscripts. a[1] refers to the address of the first element in the second
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plane; i.e. all missing subscripts are assumed to be zero.

Notice that some parts of the formula shown above can be computed at
compile time. For example, for arrays which are dimensioned with constants, the
product of dimensions D2*D3*D4 can be computed at compile time. However,
since subscripts can be arbitrary expressions, the complete offset may have to
be computed at run time.

The atoms which result from an array reference must compute the offset as
described above. Specifically, for each dimension, i, we will need a MUL atom
to multiply Si by the product of dimensions from Di+1 through Dn, and we will
need an ADD atom to add the term for this dimension to the sum of the previous
terms. Before showing a translation grammar for this purpose, however, we will
first show a grammar without action symbols or attributes, which defines array
references. Grammar G22 is an extension to the grammar for simple arithmetic
expressions, G5, given in section 3.1. Here we have changed rule 7 and added
rules 8,9.

G22
1. Expr → Expr + Term
2. Expr → Term
3. Term → Term * Factor
4. Term → Factor
5. Factor → ( Expr )
6. Factor → const
7. Factor → var Subs
8. Subs → [ Expr ] Subs
9. Subs → ǫ

This extension merely states that a variable may be followed by a list of sub-
scripting expressions, each in square brackets (the nonterminal Subs represents
a list of subscripts).

Grammar G23 shows rules 7-9 of grammar G22, with attributes and action
symbols. Our goal is to come up with a correct offset for a subscripted variable
in grammar rule 8, and provide its address for the attribute of the Subs defined
in that rule.

Grammar G23:

7. Factore → varv{MOV }0,,sumSubsv,sum,i e← v[sum]
i← 1
sum← Alloc

8. Subsv,sum,i1 → [Expre]{MUL}e,=D,T{ADD}sum,T,sumSubsv,sum,i2

D ← prod(v, i1)
i2← i1 + 1
T ← Alloc

9. Subsv,sum,i → {check}i,v
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The nonterminal Subs has three attributes: v (inherited) represents a ref-
erence to the symbol table for the array being referenced, sum (synthesized)
represents the location storing the sum of the terms which compute the offset,
and i (inherited) is the dimension being processed. In the attribute computation
rules for grammar rule 8, there is a call to a method prod(v,i). This method
computes the product of the dimensions of the array v, above dimension i. As
noted above, this product can be computed at compile time. Its value is then
stored as a constant, D, and referred to in the grammar as =D.

The first attribute rule for grammar rule 7 specifies e y v[sum]. This means
that the value of sum is used as an offset to the address of the variable v, which
then becomes the attribute of the Factor defined in rule 7.

The compiler should ensure that the number of subscripts in the array ref-
erence is equal to the number of subscripts in the array declaration. If they are
not equal, an error message should be put out. This is done by a procedure
named check(i,v) which is specified by the action symbol {check}i,v in rule 9.
This action symbol represents a procedure call, not an atom. The purpose of
the procedure is to compare the number of dimensions of the variable, v, as
stored in the symbol table, with the value of i, the number of subscripts plus
one. The check(i,v) method simply puts out an error message if the number of
subscripts does not equal the number of dimensions, and the parse continues.

To see how this translation grammar works, we take an example of a three-
dimensional array declared as int a[][][] = new int[3][5][7]. An attributed deriva-
tion tree for the reference a[p][r][c] is shown in Figure 5.11 (for simplicity we
show only the part of the tree involving the subscripted variable, not an entire
expression). To build this derivation tree, we first build the tree without att-
tributes and then fill in attribute values where possible. Note that the first and
third attributes of Subs are inherited and derive values from higher nodes or
nodes on the same level in the tree. The final result is the offset stored in the
attribute sum, which is added to the attribute of the variable being subscripted
to obtain the offset address. This is then the attribute of the Factor which is
passed up the tree.

Sample Problem 5.4.1

Assume the array m has been declared to have two planes, four
rows, and five columns: m = new char[2] [4] [5];. Show the at-
tributed derivation tree generated by grammar G23 for the array ref-
erence m[x][y][z]. Use Factor as the starting nonterminal, and
show the subscripting expressions as Expr, as done in Figure 4.12.
Also show the sequence of atoms which would be put out as a result
of this array reference.
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vara (MOV )0,,T1

[ Exprp ] (MUL)p,=35,T2 (ADD)T1,T2,T1

[ Exprr ] (MUL)r,=7,T3 (ADD)T1,T3,T1

[ Exprc ] (MUL)c,=1,T4 (ADD)T1,T4,T1

(check)4,a

Subsa,T1,4

Subsa,T1,3

Subsa,T1,2

Subsa,T1,1

Factora[T1]

Figure 5.11: A derivation tree for the array reference a[p][r][c], which is declared
as int a[3][5][7] using grammar G23.

Solution:

varm (MOV )0,,T1

[ Exprx ] (MUL)x,=20,T2 (ADD)T1,T2,T1

[ Expry ] (MUL)r,=5,T3 (ADD)T1,T3,T1

[ Exprz ] (MUL)z,=1,T4 (ADD)T1,T4,T1

(check)4,m

Subsm,T1,4

Subsm,T1,3

Subsm,T1,2

Subsm,T1,1

Factorm[T1]

The atoms put out are:

{MOV }0,,T1 {MUL}x,=20,T2 {ADD}T1,T2,T1 {MUL}y,=5,T3 {ADD}T1,T3,T1

{MUL}z,=1,T4 {ADD}T1,T4,T1 {check}4,m

5.4.1 Exercises

1. Assume the following array declarations:

int v[] = new int [13];



5.5. CASE STUDY: SYNTAX ANALYSIS FOR DECAF 197

int m[][] = new int [12][17];

int a3[][][] = new int [15][7][5];

int z[][][][] = new int [4][7][2][3];

Show the attributed derivation tree resulting from grammar G23 for each
of the following array references. Use Factor as the starting nonterminal,
and show each subscript expression as Expr, as done in Figure 5.11. Also
show the sequence of atoms that would be put out.

(a) v[7]

(b) m[q][2]

(c) a3[11][b][4]

(d) z[2][c][d][2]

(e) m[1][1]

2. The discussion in this section assumed that each array element occupied
one addressable memory cell. If each array element occupies SIZE memory
cells, what changes would have to be made to the general formula given
in this section for the offset? How would this affect grammar G23?

3. 3. You are given two vectors: the first, d, contains the dimensions of a
declared array, and the second, s, contains the subscripting values in a
reference to that array.

(a) Write a Java method :

int offSet (int d[], int s[]);

that computes the offset for an array reference a[s0][s1]...[smax−1] where
the array has been declared as char a[d0][d1] ... [dmax− 1].

(b) Improve your Java method, if possible, to minimize the number of
run-time multiplications.

5.5 Case Study: Syntax Analysis for Decaf

In this section we continue the development of a compiler for Decaf, a small
subset of the Java programming language. We do this by implementing the
syntax analysis phase of the compiler using SableCC as described in Section
5.3, above. The parser generated by SableCC will obtain input tokens from the
standard input stream. The parser will then check the tokens for correct syntax.

In addition, we provide a Translation class which enables our parser to put
out atoms corresponding to the run-time operations to be performed. This
aspect of compilation is often called semantic analysis. For more complex lan-
guages, semantic analysis would also involve type checking, type conversions,
identifier scopes, array references, and symbol table management. Since these
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will not be necessary for the Decaf compiler, syntax analysis and semantic anal-
ysis have been combined into one program.

The complete SableCC grammar file and Translation source code is shown
in AppendixB and is explained here. The input to SableCC is the file de-
caf.grammar, which generates classes for the parser, nodes, lexer, and analysis.
In the Tokens section, we define the two types of comments; comment1 is a
single-line comment, beginning with // and ending with a newline character.
comment2 is a multi-line comment, beginning with /* and ending with */. Nei-
ther of these tokens requires the use of states, which is why there is no States
section in our grammar. Next each keyword is defined as a separate token taking
care to include these before the definition of identifiers. These are followed by
special characters ’+’, ’-’, ;, .... Note that relational operators are defined collec-
tively as a compare token. Finally we define identifiers and numeric constants
as tokens. The Ignored Tokens are space and the two comment tokens.

The Productions section is really the Decaf grammar with some modifica-
tions to allow for bottom-up parsing. The major departure from what has been
given previously and in Appendix A, is the definition of the if statement. We
need to be sure to handle the dangling else appropriately; this is the ambiguity
problem discussed in section 3.1 caused by the fact that an if statement has
an optional else part. This problem was relatively easy to solve when parsing
top-down, because the ambiguity was always resolved in the correct way simply
by checking for an else token in the input stream. When parsing bottom-up,
however, we get a shift-reduce conflict from this construct. If we rewrite the
grammar to eliminate the ambiguity, as in section 3.1 (Grammar G7), we still
get a shift-reduce conflict. Unfortunately, in SableCC there is no way to resolve
this conflict always in favor of a shift (this is possible with yacc). Therefore, we
will need to rewrite the grammar once again; we use a grammar adapted from
Appel [3]. In this grammar a no short if statement is one which does not contain
an if statement without a matching else. The EBNF capabilities of SableCC
are used, for example, in the definition of compound stmt, which consists of a
pair of braces enclosing 0 or more statements. The complete grammar is shown
in appendix B. An array of Doubles named ’memory’ is used to store the values
of numeric constants.

The Translation class, also shown in appendix B, is written to produce atoms
for the arithmetic operations and control structures. The structure of an atom is
shown in Figure 5.12. The Translation class uses a few Java maps: the first map,
implemented as a HashMap and called ’hash’, stores the temporary memory
location associated with each sub-expression (i.e. with each node in the syntax
tree). It also stores label numbers for the implementation of control structures.
Hence, the keys for this map are nodes, and the values are the integer run-time
memory locations, or label numbers, associated with them. The second map,
called ’nums’, stores the values of numeric constants, hence if a number occurs
several times in a Decaf program, it need be stored only once in this map. The
third map is called ’identifiers’. This is our Decaf symbol table. Each identifier is
stored once, when it is declared. The Translation class checks that an identifier is
not declared more than once (local scope is not permitted), and it checks that an
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op Operation of Atom

left Left operand location

right Right operand location

result Result operand location
cmp Comparison code for TST atoms

dest Destination, for JMP, LBL, and TST atoms

Figure 5.12: Record structure of the file of atoms

identifier has been declared before it is used. For both numbers and identifiers,
the value part of each entry stores the run-time memory location associated with
it. The implementation of control structures for if, while, and for statements
follows that which was presented in section 4.9. A boolean expression always
results in a TST atom which branches if the comparison operation result is
false. Whenever a new temporary location is needed, the method alloc provides
the next available location (a better compiler would re-use previously allocated
locations when possible). Whenever a new label number is needed, it is provided
by the lalloc method. Note that when an integer value is stored in a map, it
must be an object, not a primitive. Therefore, we use the wrapper class for
integers provided by Java, Integer. The complete Translation class is shown in
appendix B and is available at http://www.rowan.edu/~bergmann/books.

For more documentation on SableCC, visit http://www.sablecc.org.

5.5.1 Exercises

1. Extend the Decaf language to include a do statement defined as:

DoStmt → do Stmt while ( BoolExpr ) ;

Modify the files decaf.grammar and Translation.java, shown in Appendix
B so that the compiler puts out the correct atom sequence implementing
this control structure, in which the test for termmination is made after the
body of the loop is executed. The nonterminals Stmt and BoolExpr are
already defined. For purposes of this assignment you may alter the atom
method so that it prints out its arguments to stdout rather than building
a file of atoms.

2. Extend the Decaf language to include a switch statement defined as:

SwitchStmt → switch ( Expr ) CaseList
CaseList → case number ’:’ Stmt CaseList
CaseList → case number ’:’ Stmt

Modify the files decaf.grammar and Translation.java, shown in Appendix
B, so that the compiler puts out the correct atom sequence implement-

http://www.rowan.edu/~bergmann/books
http://www.sablecc.org
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ing this control structure. The nonterminals Expr and Stmt are already
defined, as are the tokens number and end. The token switch needs to
be defined. Also define a break statement which will be used to transfer
control out of the switch statement. For purposes of this assignment, you
may alter the atom() function so that it prints out its arguments to std-
out rather than building a file of atoms, and remove the call to the code
generator.

3. Extend the Decaf language to include initializations in decalarations, such
as:

int x=3, y, z=0;

Modify the files decaf.grammar and Translation.java, shown in Appendix
B, so that the compiler puts out the correct atom sequence implementing
this feature. You will need to put out a MOV atom to assign the value of
the constant to the variable.

5.6 Chapter Summary

This chapter describes some bottom up parsing algorithms. These algorithms
recognize a sequence of grammar rules in a derivation, corresponding to an
upward direction in the derivation tree. In general, these algorithms begin with
an empty stack, read input symbols, and apply grammar rules, until left with
the starting nonterminal alone on the stack when all input symbols have been
read.

The most general class of bottom up parsing algorithms is called shift reduce
parsing. These parsers have two basic operations: (1) a shift operation pushes
the current input symbol onto the stack, and (2) a reduce operation replaces
zero or more top-most stack symbols with a single stack symbol. A reduction
can be done only if a handle can be identified on the stack. A handle is a string
of symbols occurring on the right side of a grammar rule, and matching the
symbols on top of the stack, as shown below:
▽ ... HANDLE Nt → HANDLE
The reduce operation applies the rewriting rule in reverse, by replacing the

handle on the stack with the nonterminal defined in the corresponding rule, as
shown below
▽ ... Nt
When writing the grammar for a shift reduce parser, one must take care

to avoid shift/reduce conflicts (in which it is possible to do a reduce operation
when a shift is needed for a correct parse) and reduce/reduce conflicts (in which
more than one grammar rule matches a handle).

A special case of shift reduce parsing, called LR parsing, is implemented with
a pair of tables: an action table and a goto table. The action table specifies
whether a shift or reduce operation is to be applied. The goto table specifies
the stack symbol to be pushed when the operation is a reduce.
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We studied a parser generator, SableCC, which generates an LR parser from
a specification grammar. It is also possible to include actions in the grammar
which are to be applied as the input is parsed. These actions are implemented
in a Translation class designed to be used with SableCC.

Finally we looked at an implementation of Decaf, our case study language
which is a subset of Java, using SableCC. This compiler works with the lexical
phase discussed in section 2.4 and is shown in Appendix B.



Chapter 6

Code Generation

6.1 Introduction to Code Generation

Up to this point we have ignored the architecture of the machine for which we are
building the compiler, i.e. the target machine. By architecture, we mean the def-
inition of the computer’s central processing unit as seen by a machine language
programmer. Specifications of instruction-set operations, instruction formats,
addressing modes, data formats, CPU registers, input/output instructions, etc.
all make up what is sometime called the conventional machine language archi-
tecture (to distinguish it from the microprogramming level architecture which
many computers have; see, for example, Tanenbaum [21]). Once these are all
clearly and precisely defined, we can complete the compiler by implementing the
code generation phase. This is the phase which accepts as input the syntax trees
or stream of atoms as put out by the syntax phase, and produces, as output,
the object language program in binary coded instructions in the proper format.

The primary objective of the code generator is to convert atoms or syntax
trees to instructions. In the process, it is also necessary to handle register al-
location for machines that have several general purpose CPU registers. Label
atoms must be converted to memory addresses. For some languages, the com-
piler has to check data types and call the appropriate type conversion routines
if the programmer has mixed data types in an expression or assignment.

Note that if we are developing a new computer, we do not need a working
model of that computer in order to complete the compiler; all we need are
the specifications, or architecture, of that computer. Many designers view the
construction of compilers as made up of two logical parts - the front end and the
back end. The front end consists of lexical and syntax analysis and is machine-
independent. The back end consists of code generation and optimization and is
very machine-dependent, consequently this chapter commences our discussion
of the back end, or machine-dependendent, phases of the compiler.

This separation into front and back ends simplifies things in two ways when
constructing compilers for new machines or new languages. First, if we are

202
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implementing a compiler for a new machine, and we already have compilers for
our old machine, all we need to do is write the back end, since the front end is
not machine dependent. For example, if we have a Pascal compiler for an IBM
PS/2, and we wish to implement Pascal on a new RISC (Reduced Intruction Set
Computer) machine, we can use the front end of the existing Pascal compiler
(it would have to be recompiled to run on the RISC machine). This means that
we need to write only the back end of the new compiler (refer to Figure 1.9).

Our life is also simplified when constructing a compiler for a new program-
ming language on an existing computer. In this case, we can make use of the
back end already written for our existing compiler. All we need to do is rewrite
the front end for the new language, compile it, and link it together with the
existing back end to form a complete compiler. Alternatively, we could use an
editor to combine the source code of our new front end with the source code of
the back end of the existing compiler, and compile it all at once.

For example, suppose we have a Pascal compiler for the Macintosh, and
we wish to construct an Ada compiler for the Macintosh. First, we under-
stand that the front end of each compiler translates source code to a string of
atoms (call this language Atoms), and the back end translates Atoms to Mac
machine language (Motorola 680x0 instructions). The compilers we have are

C
Pas → Mac

Pas
andC

Pas → Mac

Mac
, the compiler we want isC

Ada → Mac

Mac

, and each is composed of two parts, as shown in Figure 6.1. We writeC
Ada → Atoms

Pas
, which is the front end of an Ada compiler and is also shown in Figure 6.1.

We then compile the front end of our Ada compiler as shown in Figure 6.2
and link it with the back end of our Pascal compiler to form a complete Ada
compiler for the Mac, as shown in Figure 6.3.

The back end of the compiler consists of the code generation phase, which we
will discuss in this chapter, and the optimization phases, which will be discussed
in Chapter 7. Code generation is probably the least intensively studied phase
of the compiler. Much of it is straightforward and simple; there is no need for
extensive research in this area. In the past most of the research that has been
done is concerned with methods for specifying target machine architectures, so
that this phase of the compiler can be produced automatically, as in a compiler-
compiler. In more recent years, research has centered on generating code for
embedded systems, special-purpose computers, and multi-core systems.

Sample Problem 6.1.1

Assume we have a Pascal compiler for a Mac (both source and
executable code) as shown in Figure 6.1. We are constructing a com-
pletely new machine called a RISC, for which we wish to construct a
Pascal compiler. Show how this can be done without writing the en-
tire compiler and without writing any machine or assembly language
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We have the source code for a Pascal compiler:

C
Pas → Mac

Pas
= C

Pas → Atoms

Pas
+C

Atoms → Mac

Pas

We have the Pascal compiler which runs on the Mac:

C
Pas → Mac

Mac
= C

Pas → Atoms

Mac
+C

Atoms → Mac

Mac

We want an Ada compiler which runs on the Mac:

C
Ada → Mac

Mac
= C

Ada → Atoms

Mac
+C

Atoms → Mac

Mac

We write the front end of the Ada compiler in Pascal:

C
Ada → Atoms

Pas

Figure 6.1: Using a Pascal compiler to construct an Ada compiler

C
Pas → Mac

Mac

Mac

✲ ✲C
Ada → Atoms

Pas
C

Ada → Atoms

Mac

Figure 6.2: Compile the front end of the Ada compiler on the Mac

C
Ada → Atoms

Mac
+C

Atoms → Mac

Mac
= C

Ada → Mac

Mac

Figure 6.3: Link the front end of the Ada compiler with the back end of the
Pascal compiler to produce a complete Ada compiler.
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code.

Solution:

We wantC
Ada → RISC

RISC
Write (in Pascal) the back end of a compiler for the RISC ma-

chine:

C
Atoms → RISC

Pas

We now haveC
Pas → RISC

Pas
= C

Pas → Atoms

Pas
+

C
Atoms → RISC

Pas
which needs to be compiled on the Mac:

C
Pas → Mac

Mac

Mac

✲ ✲C
Pas → RISC

Pas
C

Pas → RISC

Mac

But this is still not what we want, so we load the output into the
Mac’s memeory and compile again:

CPas → RISC

Mac

Mac

✲ ✲C
Pas → RISC

Pas
C

Pas → RISC

RISC

and the output is the compiler that we wanted to generate.

6.1.1 Exercises

1. Show the big C notation for each of the following compilers (assume that
each uses an intermediate form called Atoms):

(a) The back end of a compiler for the Sun computer.
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(b) The source code, in Pascal, for a COBOL compiler whose target ma-
chine is the PC.

(c) The souce code, in Pascal, for the back end of a FORTRAN compiler
for the Sun.

2. Show how to generateC
Lisp → PC

PC
without writing any more pro-

grams, given a PC machine and each of the following collections of com-
pilers:

(a) C
Lisp → PC

Pas
C

Pas → PC

PC

(b) C
Lisp → Atoms

Pas
C

Pas → Atoms

Pas

C
Atoms → PC

Pas
C

Pas → PC

PC

(c) C
Lisp → Atoms

PC
C

Atoms → PC

PC

3. Given a Sparc computer and the following compilers, show how to gen-
erate a Pascal (Pas) compiler for the MIPS machine without doing any
more programming. (Unfortunately, you cannot afford to buy a MIPS
computer.)

C
Pas → Sparc

Pas
= C

Pas → Atoms

Pas
+ C

Atoms → Sparc

Pas

C
Pas → Sparc

Sparc
= C

Pas → Atoms

Sparc
+ C

Atoms → Sparc

Sparc

C
Atoms → MIPS

Pas

6.2 Converting Atoms to Instructions

If we temporarily ignore the problem of forward references (of Jump or Branch
instructions), the process of converting atoms to instructions is relatively simple.
For the most part all we need is some sort of case, switch, or multiple destination
branch based on the class of the atom being translated. Each atom class would
result in a different instruction or sequence of instructions. If the CPU of the
target machine requires that all arithmetic be done in registers, then an example
of a translation of an ADD atom would be as shown in Figure 6.4; i.e., an ADD
atom is translated into a LOD (Load Into Register) instruction, followed by an
ADD instruction, followed by a STO (Store Register To Memory) instruction.
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(ADD, a, b, T1) → LOD r1,a

ADD r1,b

STO r1,T1

Figure 6.4: Translation of an ADD atom to instructions

Most of the atom classes would be implemented in a similar way. Condi-
tional Branch atoms (called TST atoms in our examples) would normally be
implemented as a Load, Compare, and Branch, depending on the architecture
of the target machine. The MOV (move data from one memory location to
another) atom could be implemented as a MOV (Move) instruction, if permit-
ted by the target machine architecture; otherwise it would be implemented as
a Load followed by a Store.

Operand addresses which appear in atoms must be appropriately coded in
the target machine’s instruction format. For example, many target machines
require operands to be addressed with a base register and an offset from the
contents of the base register. If this is the case, the code generator must be
aware of the presumed contents of the base register, and compute the offset so
as to produce the desired operand address. For example, if we know that a
particular operand is at memory location 1E (hex), and the contents of the base
register is 10 (hex), then the offset would be 0E, because 10 + 0E = 1E. In
other words, the contents of the base register, when added to the offset, must
equal the operand address.

Sample Problem 6.2.1

The Java statement if (a>b) a = b * c; might result in the fol-
lowing sequence of atoms:

(TST, A, B,, 4, L1) // Branch to L1 if A<=B

(MUL, B, C, A)

(LBL L1)

Translate these atoms to instructions for a Load/Store architec-
ture. Assume that the operations are LOD (Load), STO (Store),
ADD, SUB, MUL, DIV, CMP (Compare), and JMP (Conditional
Branch). The Compare instruction will set a flag for the Jump in-
struction, and a comparison code of 0 always sets the flag to True,
which results in an Unconditional Branch. Assume that variables
and labels may be represented by symbolic addresses.
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Solution:

LOD r1,a // Load a into reg. r1

CMP r1,b,4 // Compare a <= B?

JMP L1 // Branch if true

LOD r1,b

MUL r1,c // r1 = b * c

STO r1,a // a = b * c

L1:

6.2.1 Exercises

1. For each of the following Java statements we show the atom string pro-
duced by the parser. Translate each atom string to instructions, as in
the sample problem for this section. You may assume that variables and
labels are represented by symbolic addresses.

(a) { a = b + c * (d - e) ;

b = a;

}

(SUB, d, e, T1)

(MUL, c, T1, T2)

(ADD, b, T2, T3)

(MOV, T3,, a)

(MOV, a,, b)

(b)
for (i=1; i<=10; i++) j = j/3 ;

(MOV, 1,, i)

(LBL, L1)

(TST, i, 10,, 3, L4) // Branch if i>10

(JMP, L3)

(LBL, L5)

(ADD, 1, i, i) // i++
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(JMP, L1) // Repeat the loop

(LBL, L3)

(DIV, j, 3, T2) // T2 = j / 3;

(MOV, T2,, j) // j = T2;

(JMP, L5)

(LBL, L4) // End of loop

(c)
if (a!=b+3) a = 0; else b = b+3;

(ADD, b, 3, T1)

(TST, a, T1,, 1, L1) // Branch if a==b+3

(MOV, 0,, a) // a = 0

(JMP, L2)

(LBL, L1)

(ADD, b, 3, T2) // T2 = b + 3

(MOV, T2,, b) // b = T2

(LBL, L2)

2. How many instructions correspond to each of the following atom classes
on a Load/Store architecture, as in the sample problem of this section?

(a) ADD (b) DIV (c) MOV

(d) TST (e) JMP (f) LBL

3. Why is it important for the code generator to know how many instructions
correspond to each atom class?

4. How many machine language instructions would correspond to an ADD
atom on each of the following architectures?

(a) Zero address architecture (a stack machine)

(b) One address architecture

(c) Two address architecture

(d) Three address architecture

6.3 Single Pass vs. Multiple Passes

There are several different ways of approaching the design of the code generation
phase. The difference between these approaches is generally characterized by
the number of passes which are made over the input file. For simplicity, we
will assume that the input file is a file of atoms, as specified in Chapters 4 and
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Atom Location Instruction
(ADD, a, b, T1) 4 LOD r1,a

5 ADD 41,b
6 STO r1,T1

(JMP, L1) 7 CMP 0,0,0
8 JMP ?

(LBL, L1) (L1 = 9)

Figure 6.5: Problem in generating a jump to a forward destination

5. A code generator which scans this file of atoms once is called a single pass
code generator, and a code generator which scans it more than once is called a
multiple pass code generator.

The most significant problem relevant to deciding whether to use a single
or multiple pass code generator has to do with forward jumps. As atoms are
encountered, instructions can be generated, and the code generator maintains
a memory address counter, or program counter. When a Label atom is encoun-
tered, a memory address value can be assigned to that Label atom (a table of
labels is maintained, with a memory address assigned to each label as it is
defined). If a Jump atom is encountered with a destination that is a higher
memory address than the Jump instruction (i.e. a forward jump), the label to
which it is jumping has not yet been encountered, and it will not be possible
to generate the Jump instruction completely at this time. An example of this
situation is shown in Figure 6.5 in which the jump to Label L1 cannot be gener-
ated because at the time the JMP atom is encountered the code generator has
not encountered the definition of the Label L1, which will have the value 9.

A JMP atom results in a CMP (Compare instruction) followed by a JMP
(Jump instruction), to be consistent with the sample architecture presented in
section 6.5, below. There are two fundamental ways to resolve the problem of
forward jumps. Single pass compilers resolve it by keeping a table of Jump
instructions which have forward destinations. Each Jump instruction with a
forward reference is generated incompletely (i.e., without a destination address)
when encountered, and each is also entered into a fixup table, along with the
Label to which it is jumping. As each Label definition is encountered, it is
entered into a table of Labels, along with its address value. When all of the
atoms have been read, all of the Label atoms will have been defined, and, at
this time, the code generator can revisit all of the Jump instructions in the
Fixup table and fill in their destination addresses. This is shown in Figure 6.6
for the same atom sequence shown in Figure 6.5. Note that when the (JMP,
L1) atom is encountered, the Label L1 has not yet been defined, so the location
of the Jump (8) is entered into the Fixup table. When the (LBL, L1) atom
is encountered, it is entered into the Label table, because the target machine
address corresponding to this Label (9) is now known. When the end of file
(EOF) is encountered, the destination of the Jump instruction at location 8 is



6.3. SINGLE PASS VS. MULTIPLE PASSES 211

Fixup Table Label Table
Atom Loc Instruction Loc Label Label Value
(ADD,a,b,T1) 4 LOD r1,a

5 ADD r1,b
6 STO r1,T1

(JMP,L1) 7 CMP 0,0,0
8 JMP 0 8 L1

(LBL,L1) L1 9
...
EOF

8 JMP 9

Figure 6.6: Use of the Fixup Table and Label Table in a single pass code gen-
erator

changed, using the Fixup table and the Label table, to 9.
Multiple pass code generators do not require a Fixup table. In this case, the

first pass of the code generator does nothing but build the table of Labels, storing
a memory address for each Label. Then, in the second pass, all the Labels will
have been defined, and each time a Jump is encountered its destination Label
will be in the table, with an assigned memory address. This method is shown
in Figure 6.7 which, again, uses the atom sequence given in Figure 6.5.

Note that, in the first pass, the code generator needs to know how many
machine language instructions correspond to an atom (three to an ADD atom
and two to a JMP atom), though it does not actually generate the instructions.
It can then assign a memory address to each Label in the Label table.

A single pass code generator could be implemented as a subroutine to the
parser. Each time the parser generates an atom, it would call the code gener-
ator to convert the atom to machine language and put out the instruction(s)
corresponding to that atom. A multiple pass code generator would have to read
from a file of atoms, created by the parser, and this is the method we use in our
sample code generator in section 6.5.

Sample Problem 6.3.1

The following atom string resulted from the Java statement
while (i<=x) { x = x+2; i = i*3; }

Translate it into instructions as in (1) a single pass code gener-
ator using a Fixup table and (2) a multiple pass code generator.

(LBL, L1)

(TST, i, x,, 3, L2) // Branch if T1 is false

(ADD, x, 2, T1)
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Begin First Pass:
Label Table

Atom Loc Instruction Label Value
(ADD,a,b,T1) 4-6

(JMP,L1) 7-8

(LBL,L1) L1 9
...
EOF

Begin Second Pass:
Atom Loc Instruction
(ADD,a,b,T1) 4 LOD r1,a

5 ADD r1,b
6 STO r1,T1

(JMP,L1) 7 CMP 0,0,0
8 JMP 9

(LBL,L1)
...
EOF

Figure 6.7: Forward jumps handled by a multiple pass code generator
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(MOV, T1, , x)

(MUL, i, 3, T2)

(MOV, T2, , i)

(JMP, L1) // Repeat the loop

(LBL, L2) // End of loop

Solution:

(1) Single Pass

Fixup Table Label Table

Atom Loc Instruction Loc Label Label Value

(LBL, L1) 0 L1 0

(TST,i,x,,3,L2) 0 CMP i,x,3

1 JMP ? 1 L2

(ADD, X, 2, T1) 2 LOD R1,x

3 ADD R1,2

4 STO R1,T1

(MOV, T1,, x) 5 LOD R1,T1

6 STO R1,x

(MUL, i, 3, T2) 7 LOD R1,i

8 MUL R1,3

9 STO R1,T2

(MOV, T2,, i) 10 LOD R1,T2

11 STO R1,i

(JMP, L1) 12 CMP 0,0,0

13 JMP 0

(LBL, L2) 14 L2 14

...

1 JMP 14

(2) Multiple passes

Begin First Pass:

Label Table

Atom Loc Instruction Label Value

(LBL, L1) 0 L1 0

(TST,i,x,,3,L2) 0

(ADD, X, 2, T1) 2
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(MOV, T1,, x) 5

(MUL, i, 3, T2) 7

(MOV, T2,, i) 10

(JMP, L1) 12

(LBL, L2) 14 L2 14

...

Begin Second Pass:

Atom Loc Instruction

(LBL, L1) 0

(TST,i,x,,3,L2) 0 CMP i,x,3

1 JMP 14

(ADD, X, 2, T1) 2 LOD R1,x

3 ADD R1,2

4 STO R1,T1

(MOV, T1,, x) 5 LOD R1,T1

6 STO R1,x

(MUL, i, 3, T2) 7 LOD R1,i

8 MUL R1,3

9 STO R1,T2

(MOV, T2,, i) 10 LOD R1,T2

11 STO R1,i

(JMP, L1) 12 CMP 0,0,0

13 JMP 0

(LBL, L2) 14

6.3.1 Exercises

1. The following atom string resulted from the Java statement:

for (i=a; i<b+c; i++) b = b/2;

Translate the atoms to instructions as in the sample problem for this
section using two methods: (1) a single pass method with a Fixup table
for forward Jumps and (2) a multiple pass method. Refer to the variables
a,b,c symbolically.
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(MOV, a,, i)

(LBL, L1)

(ADD, b, c, T1) // T1 = b+c

(TST, i, T1,, 4, L2) // If i>=b+c, exit loop

(JMP, L3) // Exit loop

(LBL, L4)

(ADD, i, 1, i) // Increment i

(JMP, L1) // Repeat loop

(LBL, L3)

(DIV, b, =’2’, T3) // Loop Body

(MOV, T3,, b)

(JMP, L4) // Jump to increment

(LBL, L2)

2. Repeat Problem 1 for the atom string resulting from the Java statement:

if (a==(b-33)*2) a = (b-33)*2;

else a = x+y;

(SUB, b, =’33’, T1)

(MUL, T1, =’2’, T2) // T2 = (b-33)*2

(TST, a, T2,, 6, L1) // Branch if a!=T2

(SUB, b, =’33’, T3)

(MUL, T3, =’2’, T4)

(MOV, T4,, a)

(JMP, L2) // Skip else part

(LBL, L1) // else part

(ADD, x, y, T5)

(MOV, T5,, a)

(LBL, L2)

3. (a) What are the advantages of a single pass method of code generation
over a multiple pass method?

(b) What are the advantages of a multiple pass method of code generation
over a single pass method?

6.4 Register Allocation

Some computers (such as the DEC PDP-8) are designed with a single arithmetic
register, called an accumulator, in which all arithmetic operations are performed.
Other computers (such as the Intel 8086) have only a few CPU registers, and
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they are not general purpose registers; i.e., each one has a limited range of uses
or functions. In these cases the allocation of registers is not a problem.

However, most modern architectures have many CPU registers; the DEC
Vax, IBM mainframe, MIPS, and Motorola 680x0 architectures each has 16-
32 general purpose registers, for example, and the RISC (Reduced Instruction
Set Computer) architectures, such as the SUN SPARC, generally have about
500 CPU registers (though only 32 are used at a time). In this case, register
allocation becomes an important problem. Register allocation is the process
of assigning a purpose to a particular register, or binding a register to a pro-
grammer variable or compiler variable, so that for a certain range or scope of
instructions that register has the specified purpose or binding and is used for no
other purposes. The code generator must maintain information on which reg-
isters are used for which purposes, and which registers are available for reuse.
The main objective in register allocation is to maximize utilization of the CPU
registers, and to minimize references to memory locations.

It might seem that register allocation is more properly a topic in the area of
code optimization, since code generation could be done with the assumption that
there is only one CPU register (resulting in rather inefficient code). Nevertheless,
register allocation is always handled (though perhaps not in an optimal way)
in the code generation phase. A well chosen register allocation scheme can not
only reduce the number of instructions required, but it can also reduce the
number of memory references. Since operands which are used repeatedly can
be kept in registers, the operands do not need to be recomputed, nor do they
need to be loaded from memory. It is especially important to minimize memory
references in compilers for RISC machines, in which the objective is to execute
one instruction per machine cycle, as described in Tanenbaum [21].

An example, showing the importance of smart register allocation, is shown
in Figure 6.8 for the two statement program segment:

a = b + c * d ;

a = a - c * d ;

The smart register allocation scheme takes advantage of the fact that C*D
is a common subexpression, and that the variable A is bound, temporarily, to
register R2. If no attention is paid to register allocation, the two statements
in Figure 6.8 are translated into twelve instructions, involving a total of twelve
memory references. With smart register allocation, however, the two statements
are translated into seven instructions, with only five memory references. (Some
computers, such as the VAX, permit arithmetic on memory operands, in which
case register allocation takes on lesser importance.)

An algorithm which takes advantage of repeated subexpressions will be dis-
cussed in Section 7.2. Here, we will discuss an algorithm which determines how
many registers will be needed to evaluate an expression without storing subex-
pressions to temporary memory locations. This algorithm will also determine
the sequence in which subexpressions should be evaluated to minimize register
usage.

This register allocation algorithm will require a syntax tree for an expression
to be evaluated. Each node of the syntax tree will have a weight associated
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Simple Register Allocation Smart Register Allocation
LOD r1,c LOD r1,c
MUL r1,d MUL r1,d c*d
STO r1,Temp1 LOD r2,B
LOD r1,b ADD r2,r1 b+c*d
ADD r1,Temp1 STO r2,a
STO r1,a SUB r2,r1 a-c*d
LOD r1,c STO r2,b a-c*d
MUL r1,d
STO r1,Temp2
LOD r1,a
SUB r1,Temp2
STO r1,b

Figure 6.8: Register allocation, simple and smart, for a two statement program:
a = b+c*d; a = b-c*d;

a(1) b(0)

*(1)

c(1) d(0)

+(1)

e(1) f(0)

+(1)

*(2)

-(2)

Figure 6.9: A weighted syntax tree for a*b-(c+d)*(e+f) with weights shown
in parentheses

with it which tells us how many registers will be needed to evaluate each subex-
pression without storing to temporary memory locations. Each leaf node which
is a left operand will have a weight of one, and each leaf node which is a right
operand will have a weight of zero. The weight of each interior node will be
computed from the weights of its two children as follows: If the two children
have different weights, the parent’s weight is the maximum of the two children.
If the two children have the same weight, w, then the parent’s weight is w+1.
As an example, the weighted syntax tree for the expression a*b - (c+d) * (e+f)
is shown in Figure 6.9 from which we can see that the entire expression should
require two registers.

Intuitively, if two expressions representing the two children of a node, N, in
a syntax tree require the same number of registers, we will need an additional
register to store the result for node N, regardless of which subexpression is
evaluated first. In the other case, if the two subexpressions do not require the
same number of registers, we can evaluate the one requiring more registers first,
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LOD r1,c

ADD r1,d r1 = c + d

LOD r2,3

ADD r2,f r2 = e + f

MUL r1,r2 r1 = (c+d) * (e+f)

LOD r2,a

MUL r2,b r2 = a * b

SUB r2,41 r2 = a*b - (c+d)*(e+f)

Figure 6.10: Code generated for a*b-(c+d) * (e+f) using Figure 6.9

at which point those registers are freed for other use.
We can now generate code for this expression. We do this by evaluating the

operand having greater weight, first. If both operands of an operation have the
same weight, we evaluate the left operand first. For our example in Figure 6.9
we generate the code shown in Figure 6.10. We assume that there are register-
register instructions (i.e., instructions in which both operands are contained in
registers) for the arithmetic operations in the target machine architecture. Note
that if we had evaluated a*b first we would have needed either an additional
register or memory references to a temporary location.

This problem would have had a more interesting solution if the expression
had been e+f - (c+d)*(e+f) because of the repeated subexpression e+f. If the
value of e+f were left in a register, it would not have to be recomputed. There
are algorithms which handle this kind of problem, but they will be covered in
the chapter on optimization (Chapter 7).

Sample Problem 6.4.1

Use the register allocation algorithm of this section to show a
weighted syntax tree for the expression a - b/c + d * (e-f + g*h),
and show the resulting instructions, as in Figure 6.10.

Solution:

LOD r1,a

LOD r2,b

DIV r2,c b/c
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SUB r1,r2 a - b/c

LOD r2,e

SUB r2,f e - f

LOD r3,g

MUL r3,h g * h

ADD r2,r3 e - f + g * h

LOD r3,d

MUL r3,r2 d * (e-f + g*h)

ADD r1,r3 a - b/c + d * (e-f + g*h)

6.4.1 Exercises

1. Use the register allocation algorithm given in this section to construct a
weighted syntax tree and generate code for each of the given expressions,
as done in Sample Problem ??. Do not attempt to optimize for common
subexpressions.

(a) a + b * c - d

(b) a + (b + (c + (d + e)))

(c) (a + b) * (c + d) - (a + b) * (c + d)

(d) a / (b + c) - (d + (e - f)) + (g - h * i) * (j * (k / m))

2. Show an expression different in structure from those in Problem 1 which
requires:

(a) two registers (b) three registers

As in Problem 1, assume that common subexpressions are not detected
and that Loads and Stores are minimized.

3. Show how the code generated in Problem 1 (c) can be improved by making
use of common subexpressions.

6.5 Case Study: A Code Generator for the Mini

Architecture

When working with code generators, at some point it becomes necessary to
choose a target machine. Up to this point we have been reluctant to do so
because we wanted the discussion to be as general as possible, so that the
concepts could be applied to a variety of architectures. However, in this section
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we will work with an example of a code generator, and it now becomes necessary
to specify a target machine architecture. It is tempting to choose a popular
machine such as a RISC, Intel, Motorola, IBM, or Sparc CPU. If we did so, the
student who had access to that processor could conceivably generate executable
code for that machine. But what about those who do not have access to the
chosen processor? Also, there would be details, such as Object formats (the
input to the linker), and supervisor or system calls for certain operations, which
we have not explained.

For these reasons, we choose our own simulated machine. This is an archi-
tecture which we will specify for the student. We also provide a simulator for
this machine, written in the C language. Thus, anyone who has a C compiler
has access to our simulated machine, regardless of the actual platform on which
it is running. Another advantage of a simulated architecture is that we can
make it as simple as necessary to illustrate the concepts of code generation. We
need not be concerned with efficiency or completeness. The architecture will be
relatively simple and not cluttered with unnecessary features.

6.5.1 Mini: The Simulated Architecture

In this section we devise a completely fictitious computer, and we provide a
simulator for that computer so that the student will be able to generate and
execute machine language programs. We call our machine Mini, not because it
is supposed to be a ’minicomputer’, but because it is really a minimal computer.
We have described and implemented just enough of the architecture to enable
us to implement a fairly simple code generator. The student should feel free to
implement additional features in the Mini architecture. For example, the Mini
architecture contains no integer arithmetic; all arithmetic is done with floating-
point values, but the instruction set could easily be extended to include integer
arithmetic.

The Mini architecture has a 32-bit word size, with 32-bit registers, and
a word addressable memory consisting of, at most, 4 G (32 bit) words (the
simulator defines a memory of 64 K words, though this is easily extended).
There are two addressing modes in the Mini architecture: absolute and register-
displacement. In absolute mode, the memory address is stored in the instruction
as a 20-bit quantity (in this mode it is only possible to address the lowest
megaword of memory). In register-displacement mode, the memory address is
computed by adding the contents of the specified general register to the value of
the 16-bit offset, or displacement, in the instruction (in this mode it is possible
to address all of memory).

The CPU has sixteen general purpose registers and sixteen floating-point
registers. All floating-point arithmetic must be done in the floating-point regis-
ters (floating-point data are stored in the format of the simulator’s host machine,
so the student need not be concerned with the specifics of floating-point data
formats). There is also a 1-bit flag in the CPU which is set by the compare
(CMP) instruction and tested by the conditional branch (JMP) instruction.
There is also a 32-bit program counter register (PC). The Mini processor has
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Absolute Mode

4
op

1
0

3
cmp

4
r1

20
s2

Register-displacement Mode

4
op

1
1

3
cmp

4
r1

4
r2

16
d2

Figure 6.11: Mini instruction formats

two instruction formats corresponding to the two addressing modes, as shown
in Figure 6.11.

The absolute mode instruction can be described as:
fpreg[r1]← fpreg[r1]opmemory[s2]
and the register-displacement mode instruction can be described as
fpreg[r1]← fpreg[r1]opmemory[reg[r2] + d2].
The operation codes (specified in the op field) are shown below:

0 CLR fpreg[r1] ← 0 Clear Floating-Point Reg.
1 ADD fpreg[r1] ← fpreg[r1] + memory[s2] Floating-Point Add
2 SUB fpreg[r1] ← fpreg[r1] - memory[s2] Floating-Point Subtract
3 MUL fpreg[r1] ← fpreg[r1] * memory[s2] Floating-Point Multiply
4 DIV fpreg[r1] ← fpreg[r1] / memory[s2] Floating-Point Division
5 JMP PC ← s2 if flag is true Conditional Branch
6 CMP flag ← r1 cmp memory[s2] Compare, Set Flag
7 LOD fpreg[r1] ← memory[s2] Load Floating-Point Register
8 STO memory[s2] ← fpreg[r1] Store Floating-Point Register
9 HLT Halt Processor

The Compare field in either instruction format (cmp) is used only by the
Compare instruction to indicate the kind of comparison to be done on arithmetic
data. In addition to a code of 0, which always sets the flag to True, there are
six valid comparison codes as shown below:

1 == 4 <=

2 < 5 >=

3 > 6 !=

The following example of a Mini program will replace the memory word at loca-
tion 0 with its absolute value. The memory contents are shown in hexadecimal,
and program execution is assumed to begin at memory location 1.
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Loc Contents

0 00000000 Data 0

1 00100000 CLR r1 Put 0 into register r1.

2 64100000 CMP r1,Data,4 Is 0 <= Data?

3 50000006 JMP Stop If so, finished.

4 20100000 SUB r1,Data If not, find 0-Data.

5 80100000 STO r1,Data

6 90000000 Stop HLT Halt processor

The simulator for the Mini architecture is shown in Appendix C.

6.5.2 The Input to the Code Generator

In our example, the input to the code generator will be a file in which each record
is an atom, as discussed in chapters 4 and 5. Here we specify the meaning of
the atoms more precisely in the table below:

Class Name Operands Meaning

1 ADD left right result

result = left + right

2 SUB left right result

result = left - right

3 MUL left right result

result = left * right

4 DIV left right result

result = left / right

5 JMP - - - - dest

branch to dest

10 NEG left - result

result = - left

11 LBL - - - - dest

(no action)

12 TST left right - cmp dest

branch to dest if

left cmp right is true

13 MOV left - result - -

result = left

Each atom class is specified with an integer code, and each record may have
up to six fields specifying the atom class, the location of the left operand, the
location of the right operand, the location of the result, a comparison code (for
TST atoms only), and a destination (for JMP, LBL, and TST atoms only). Note
that a JMP atom is an unconditional branch, whereas a JMP instruction is a
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conditional branch. An example of an input file of atoms which would replace
the value of Data with its absolute value is shown below:

TST 0 Data 4 L1 - Branch to L1 if 0 <= Data

NEG Data - Data - - Data = - Data

LBL L1 - - - -

6.5.3 The Code Generator for Mini

The complete code generator is shown in Appendix B, in which the function
name is code gen(). In this section we explain the techniques used and the
design of that program. The code generator reads from a file of atoms, and
it is designed to work in two passes. Since instructions are 32 bits, the code
generator declares integer quantities as long (assuming that the host machine
will implement these in 32 bits).

In the first pass it builds a table of Labels, assigning each Label a value
corresponding to its ultimate machine address; the table is built by the function
build labels(), and the name of the table is labels. It is simply an array of
integers holding the value of each Label. The integer variable pc is used to
maintain a hypothetical program counter as the atoms are read, incremented
by two for MOV and JMP atoms and incremented by three for all other atoms.
The global variable end data indicates the memory location where the program
instructions will begin, since all constants and program variables are stored,
beginning at memory location 0, by a function called out mem() and precede
the instructions.

After the first pass is complete, the file of atoms is closed and reopened to
begin reading atoms for the second pass. The control structure for the second
pass is a switch statement that uses the atom class to determine flow of control.
Each atom class is handled by two or three calls to a function that actually
generates an instruction - gen(). Label definitions can be ignored in the second
pass.

The function which generates instructions takes four arguments:
gen (op, r, add, cmp)
where op is the operation code of the instruction, r is the register for the first

operand, add is the absolute address for the second operand, and cmp is the
comparison code for Compare instructions. For simplicity, the addressing mode
is assumed always to be absolute (this limits us to a one megaword address
space). As an example, Figure 6.11 shows that a Multiply atom would be
translated by three calls to the gen() function to generate LOD, MUL, and
STO instructions.

In Figure 6.11, the function reg() returns an available floating-point register.
For simplicity, our implementation of reg() always returns a 1, which means that
floating-point values are always kept in floating-point register 1. The structure
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inp is used to hold the atom which is being processed. The dest field of an atom
is the destination label for jump instructions, and the actual address is obtained
from the labels table by a function called lookup(). The code generator sends
all instructions to the standard output file as hex characters, so that the user
has the option of discarding them, storing them in a file, or piping them directly
into the Mini simulator. The generated instructions are shown to the right in
Figure 6.11.

The student is encouraged to use, abuse, modify and/or distribute (but not
for profit) the software shown in the Appendix to gain a better understanding
of the operation of the code generator.

6.5.4 Exercises

1. How is the compiler’s task simplified by the fact that floating-point is the
only numeric data type in the Mini architecture?

2. Disassemble the following Mini instructions. Assume that general register
7 contains hex 20, and that the variables A and B are stored at locations
hex 21 and hex 22, respectively.

70100021

10300022

18370002

3. Show the code, in hex, generated by the code generator for each of the
following atom strings. Assume that A and B are stored at locations 0
and 1, respectively. Allocate space for the temporary value T1 at the end
of the program.

(a)
class left right result cmp dest
MULA B T1 - -
LBL - - - - L1
TST A T1 - 2 L1
JMP - - - - L2
MOVT1 - B - -
LBL - - - - L2

(b)
class left right result cmp dest
NEGA - T1 - -
LBL - - - 0 L1
MOVT1 - B - -
TST B T1 - 4 L1
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(c)
class left right result cmp dest
TST A B - 6 L2
JMP - - - - L1
LBL - - - - L2
TST A T1 - 0 L2
LBL - - - - L1

6.6 Chapter Summary

This chapter commences our study of the back end of a compiler. Prior to
this point everything we have studied was included in the front end. The code
generator is the portion of the compiler which accepts syntax trees or atoms
(sometimes referred to as 3 -address code) created by the front end and converts
them to machine language instructions for the target machine.

It was shown that if the language of syntax trees or atoms (known as an
intermediate form) is standardized, then, as new machines are constructed, we
need only rewrite the back ends of our compilers. Conversely, as new languages
are developed, we need only rewrite the front ends of our compilers.

The process of converting atoms to instructions is relatively easy to imple-
ment, since each atom corresponds to a small, fixed number of instructions. The
main problems to be solved in this process are (1)obtaining memory addresses
for forward references and (2) register allocation . Forward references result
from branch instructions to a higher memory address which can be computed
by either single pass or multiple pass methods. With a single pass method, a
fixup table for forward references is required. For either method a table of labels
is used to bind labels to target machine addresses.

Register allocation is important for efficient object code in machines which
have several CPU registers. An algorithm for allocating registers from syntax
trees are presented. Algorithms which make use of common subexpressions in
an expression, or common subexpressions in a block of code, will be discussed
in Chapter 7 .

This chapter concludes with a case study code generator. This code gener-
ator can be used for any compiler whose front end puts out atoms as we have
defined them. In order to complete the case study, we define a fictitious tar-
get machine, called Mini. This machine has a very simple 32 bit architecture,
which simplifies the code generation task. Since we have a simulator for the
Mini machine, written in the C language, in Appendix C, anyone with access
to a C compiler can run the Mini machine.

It is assumed that all arithmetic is done in floating-point format, which
eliminates the need for data conversions. Code is generated by a function with



226 CHAPTER 6. CODE GENERATION

three arguments specifying the operation code and two operands. The code
generator, shown in Appendix B.3, uses a two pass method to handle forward
references.



Chapter 7

Optimization

7.1 Introduction and View of Optimization

In recent years, most research and development in the area of compiler design
has been focused on the optimization phases of the compiler. Optimization is the
process of improving generated code so as to reduce its potential running time
and/or reduce the space required to store it in memory. Software designers are
often faced with decisions which involve a space-time tradeoff, i.e. one method
will result in a faster program, another method will result in a program which
requires less memory, but no method will do both. However, many optimization
techniques are capable of improving the object program in both time and space,
which is why they are employed in most modern compilers. This results from
either the fact that much effort has been directed toward the development of
optimization techniques, or from the fact that the code normally generated is
very poor and easily improved.

The word optimization is possibly a misnomer, since the techniques that have
been developed simply attempt to improve the generated code, and few of them
are guaranteed to produce, in any sense, optimal (the most efficient possible)
code. Nevertheless, the word optimization is the one that is universally used to
describe these techniques, and we will use it also. We have already seen that
some of these techniques (such as register allocation) are normally handled in
the code generation phase, and we will not discuss them here.

Optimization techniques can be separated into two general classes: local and
global. Local optimization techniques normally are concerned with transforma-
tions on small sections of code (involving only a few instructions) and generally
operate on the machine language instructions which are produced by the code
generator. On the other hand, global optimization techniques are generally con-
cerned with larger blocks of code, or even multiple blocks or modules, and will
be applied to the intermediate form, atom strings, or syntax trees put out by
the parser. Both local and global optimization phases are optional, but may be
included in the compiler as shown in Figure 7.1, i.e., the output of the parser is

227
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Inetermediate Form (atoms from the parser)

Gloabal
Optimization

Improved Intermediate Form (atoms)

Code
Generator

Object Code (instructions)

Global
Optimization

Atoms

Local
Optimization

Improved Object Code (instructions)

❄

❄

❄

❄

❄

Figure 7.1: Sequence of Optimization Phases in a Compiler

the input to the global optimization phase, the output of the global optimization
phase is the input to the code generator, the output of the code generator is the
input to the local optimization phase, and the output of the local optimization
phase is the final output of the compiler. The three compiler phases shown in
Figure 7.1 make up the back end of the compiler, discussed in Section 6.1.

In this discussion on improving performance, we stress the single most im-
portant property of a compiler - that it preserve the semantics of the source
program. In other words, the purpose and behavior of the object program
should be exactly as specified by the source program for all possible inputs.
There are no conceivable improvements in efficiency which can justify violating
this promise.

Having made this point, there are frequently situations in which the compu-
tation specified by the source program is ambiguous or unclear for a particular
computer architecture. For example, in the expression (a + b) ∗ (c + d) the
compiler will have to decide which addition is to be performed first (assuming
that the target machine has only one Arithmetic and Logic Unit). Most pro-
gramming languages leave this unspecified, and it is entirely up to the compiler
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designer, so that different compilers could evaluate this expression in different
ways. In most cases it may not matter, but if any of a, b, c, or d happen to be
function calls which produce output or side effects, it may make a significant
difference. Languages such as Java, C, Lisp, and APL, which have assignment
operators, yield an even more interesting example:

a = 2; b = (a ∗ 1 + (a = 3));
Some compiler writers feel that programmers who use ambiguous expressions

such as these deserve whatever the compiler may do to them.
A fundamental question of philosophy is inevitable in the design of the op-

timization phases. Should the compiler make extensive transformations and
improvements to the source program, or should it respect the programmer’s
decision to do things that are inefficient or unnecessary? Most compilers tend
to assume that the average programmer does not intentionally write inefficient
code, and will perform the optimizing transformations. A sophisticated pro-
grammer or hacker who, in rare cases, has a reason for writing the code in that
fashion can usually find a way to force the compiler to generate the desired
output.

One significant problem for the user of the compiler, introduced by the opti-
mization phases, has to do with debugging. Many of the optimization techniques
will remove unnecessary code and move code within the object program to an
extent that run-time debugging is affected. The programmer may attempt to
step through a series of statements which either do not exist, or occur in an
order different from what was originally specified by the source program!

To solve this problem, most modern and available compilers include a switch
with which optimization may be turned on or off. When debugging new soft-
ware, the switch is off, and when the software is fully tested, the switch can
be turned on to produce an efficient version of the program for distribution.
It is essential, however, that the optimized version and the non-optimized ver-
sion be functionally equivalent (i.e., given the same inputs, they should produce
identical outputs). This is one of the more difficult problems that the compiler
designer must deal with.

Another solution to this problem, used by IBM in the early 1970’s for its
PL/1 compiler, is to produce two separate compilers. The checkout compiler was
designed for interactive use and debugging. The optimizing compiler contained
extensive optimization, but was not amenable to the testing and development
of software. Again, the vendor (IBM in this case) had to be certain that the
two compilers produced functionally equivalent output.

7.1.1 Exercises

1. Using a Java compiler,

(a) what would be printed as a result of running the following:

{

int a, b;
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b = (a = 2) + (a = 3);

System.out.println ("a is " + a);

}

(b) What other value might be printed as a result of compilation with a
different compiler?

2. Explain why the following two statements cannot be assumed to be equiv-
alent:

a = f(x) + f(x) + f(x) ;

a = 3 * f(x) ;

3. (a) Perform the following computations, rounding to four significant digits
after each operation.

(0.7043 + 0.4045) + -0.3330 = ?

0.7043 + (0.4045 + -0.3330) = ?

(b) What can you can conclude about the associativity of addition with
computer arithmetic?

7.2 Global Optimization

As mentioned previously, global optimization is a transformation on the output
of the parser. Global optimization techniques will normally accept, as input, the
intermediate form as a sequence of atoms (three-address code) or syntax trees.
There are several global optimization techniques in the literature - more than
we can hope to cover in detail. Therefore, we will look at the optimization of
common subexpressions in basic blocks in some detail, and then briefly survey
some of the other global optimization techniques.

A few optimization techniques, such as algebraic optimizations, can be con-
sidered either local or global. Since it is generally easier to deal with atoms than
with instructions, we will include algebraic techniques in this section.

7.2.1 Basic Blocks and DAGs

The sequence of atoms put out by the parser is clearly not an optimal sequence;
there are many unnecessary and redundant atoms. For example, consider the
Java statement:

a = (b + c) * (b + c) ;
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(ADD, b, c, T1)

(ADD, b, c, T2)

(MUL, T1, T2, T3)

(MOV, T3,, a)

Figure 7.2: Atom Sequence for a = (b + c) ∗ (b + c);

(ADD, b, c, T1)

(MUL, T1, T1, a)

Figure 7.3: Optimized Atom Sequence for a = (b + c) ∗ (b + c);

The sequence of atoms put out by the parser could conceivably be as shown
in Figure 7.2.

Every time the parser finds a correctly formed addition operation with two
operands it blindly puts out an ADD atom, whether or not this is necessary. In
the above example, it is clearly not necessary to evaluate the sum b + c twice.
In addition, the MOV atom is not necessary because the MUL atom could store
its result directly into the variable a. The atom sequence shown in Figure 7.3 is
equivalent to the one given in Figure 7.2, but requires only two atoms because
it makes use of common subexpressions and it stores the result in the variable
a, rather than a temporary location.

In this section, we will demonstrate some techniques for implementing these
optimization improvements to the atoms put out by the parser. These im-
provements will result in programs which are both smaller and faster, i.e., they
optimize in both space and time.

It is important to recognize that these optimizations would not have been
possible if there had been intervening Label or Jump atoms in the parser output.
For example, if the atom sequence had been as shown in Figure 7.4, we could
not have optimized to the sequence of Figure 7.3, because there could be atoms
which jump into this code at Label L1, thus altering our assumptions about
the values of the variables and temporary locations. (The atoms in Figure 7.4
do not result from the given Java statement, and the example is, admittedly,
artificially contrived to make the point that Label atoms will affect our ability
to optimize.)

By the same reasoning, Jump or Branch atoms will interfere with our ability
to make these optimizing transformations to the atom sequence. In Figure 7.4
the MUL atom cannot store its result into the variable a, because the compiler
does not know whether the conditional branch will be taken.

The optimization techniques which we will demonstrate can be effected only
in certain subsequences of the atom string, which we call basic blocks. A basic
block is a section of atoms which contains no Label or branch atoms (i.e., LBL,
TST, JMP). In Figure 7.5, we show that the atom sequence of Figure 7.4 is
divided into three basic blocks.



232 CHAPTER 7. OPTIMIZATION

(ADD, b, c, T1)

(LBL, L1)

(ADD, b, c, T2)

(MUL, T1, T2, T3)

(TST, b, c,, 1, L3)

(MOV, T3,, a)

Figure 7.4: Example of an Atom Sequence Which Cannot be Optimized

(ADD, b, c, T1) Block 1
(LBL, L1)
(ADD, b, c, T2 Block 2
(MUL, T1, T2, T3
(TST, b, c,, 1, L3)
(MOV, T3,, a) Block 3

Figure 7.5: Basic blocks contain No LBL, TST, or JMP atoms

Each basic block is optimized as a separate entity. There are more advanced
techniques which permit optimization across basic blocks, but they are beyond
the scope of this text. We use a Directed Acyclic Graph, or DAG, to implement
this optimization. The DAG is directed because the arcs have arrows indicating
the direction of the arcs, and it is acyclic because there is no path leading from
a node back to itself (i.e., it has no cycles). The DAG is similar to a syntax tree,
but it is not truly a tree because some nodes may have more than one parent
and also because the children of a node need not be distinct. An example of a
DAG, in which interior nodes are labeled with operations, and leaf nodes are
labeled with operands is shown in Figure 7.6.

Each of the operations in Figure 7.6 is a binary operation (i.e., each operation
has two operands), consequently each interior node has two arcs pointing to the
two operands. Note that in general we will distinguish between the left and
right arc because we need to distinguish between the left and right operands
of an operation (this is certainly true for subtraction and division, which are
not commutative operations). We will be careful to draw the DAGs so that it
is always clear which arc represents the left operand and which arc represents
the right operand. For example, in Figure 7.6 the left operand of the addition
labeled T3 is T2, and the right operand is T1. Our plan is to show how to build
a DAG from an atom sequence, from which we can then optimize the atom
sequence.

We will begin by building DAGs for simple arithmetic expressions. DAGs
can also be used to optimize complete assignment statements and blocks of
statements, but we will not take the time to do that here. To build a DAG,
given a sequence of atoms representing an arithmetic expression with binary
operations, we use the following algorithm:
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+
T3

+T2

*T1

a b

Figure 7.6: An example of a DAG

1. Read an atom.

2. If the operation and operands match part of the existing DAG (i.e., if they
form a sub DAG), then add the result Label to the list of Labels on the
parent and repeat from Step 1. Otherwise, allocate a new node for each
operand that is not already in the DAG, and a node for the operation.
Label the operation node with the name of the result of the operation.

3. Connect the operation node to the two operands with directed arcs, so
that it is clear which operand is the left and which is the right.

4. Repeat from Step 1.

As an example, we will build a DAG for the expression a * b + a * b +

a * b. This expression clearly has some common subexpressions, which should
make it amenable for optimization. The atom sequence as put out by the parser
would be:

(MUL, a, b, T1)

(MUL, a, b, T2)

(ADD, T1, T2, T3)

(MUL, a, b, T4)

(ADD, T3, T4, T5)

We follow the algorithm to build the DAG, as shown in Figure 7.7, in which
we show how the DAG is constructed as each atom is processed.

The DAG is a graphical representation of the computation needed to evaluate
the original expression in which we have identified common subexpressions. For
example, the expression a * b occurs three times in the original expression a

* b + a * b + a * b. The three atoms corresponding to these subexpressions
store results into T1, T2, and T4. Since the computation need be done only
once, these three atoms are combined into one node in the DAG labeled T1.2.4.



234 CHAPTER 7. OPTIMIZATION

*T1

a b

(MUL a, b, T1)

*T1.2

a b

(MUL a, b, T2)

+T3

*T1.2

a b

(ADD T1, T2, T3)

+T3

*T1.2.4

a b

(MUL a, b, T4)

+
T5

+T3

*T1.2.4

a b

(MUL a, b, T4)

Figure 7.7: Building the DAG for a * b + a * b + a * b
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After that point, any atom which uses T1, T2, or T4 as an operand will point
to T1.2.4.

We are now ready to convert the DAG to a basic block of atoms. The algo-
rithm given below will generate atoms (in reverse order) in which all common
subexpressions are evaluated only once:

1. Choose any node having no incoming arcs (initially there should be only
one such node, representing the value of the entire expression).

2. Put out an atom for its operation and its operands.

3. Delete this node and its outgoing arcs from the DAG.

4. Repeat from Step 1 as long as there are still operation nodes remaining in
the DAG.

This algorithm is demonstrated in Figure 7.8. in which we are working with
the same expression that generated the DAG of Figure 7.7. The DAG and the
output are shown for each iteration of the algorithm (there are three iterations).

A composite node, such as T1.2.4, is referred to by its full name rather than
simply T1 or T2 by convention, and to help check for mistakes. The student
should verify that the three atoms generated in Figure 7.8 actually compute the
given expression, reading the atoms from bottom to top. We started with a
string of five atoms, and have improved it to an equivalent string of only three
atoms. This will result in significant savings in both run time and space required
for the object program.

Unary operations can be handled easily using this method. Since a unary
operation has only one operand, its node will have only one arc pointing to the
operand, but in all other respects the algorithms given for building DAGs and
generating optimized atom sequences remain unchanged. Consequently, this
method generalizes well to expressions involving operations with any number of
operands, though for our purposes operations will generally have two operands.

Sample Problem 7.2.1

Construct the DAG and show the optimized sequence of atoms for
the Java expression (a - b) * c + d * (a - b) * c. The atoms
produced by the parser are shown below:

(SUB, a, b, T1)

(MUL, T1, c, T2)

(SUB, a, b, T3)

(MUL, d, T3, T4)

(MUL, T4, c, T5)

(ADD, T2, T5, T6)
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+
T5

+T3

*T1.2.4

a b

(ADD, T3, T1.2.4, T5)

+T3

*T1.2.4

a b

(ADD, T1.2.4, T1.2.4, T3)

*T1.2.4

a b

(MUL a, b, T1.2.4)

Figure 7.8: Generating atoms from the DAG for a * b + a * b + a * b
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Solution:

(SUB, a, b, T1.3)

(MUL, d, T1.3, T4)

(MUL, T4, c, T5)

(MUL, T1.3, c, T2)

(ADD, T2, T5, T6)

+
T6

*
T5

*T4 * T2

d - c

T1.3

a b

7.2.2 Other Global Optimization Techniques

We will now examine a few other common global optimization techniques; how-
ever, we will not go into the implementation of these techniques.

Unreachable code is an atom or sequence of atoms which cannot be executed
because there is no way for the flow of control to reach that sequence of atoms.
For example, in the following atom sequence the MUL, SUB, and ADD atoms
will never be executed because of the unconditional jump preceding them:

(JMP, L1)

(MUL, a, b, T1)

(SUB, T1, c, T2)

(ADD, T2, d, T3)

(LBL, L2)

Thus, the three atoms following the JMP and preceding the LBL can all be
removed from the program without changing the purpose of the program:
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{

a = b + c * d; // This statement has no effect and can be removed.

b = c * d / 3;

c = b - 3;

a = b - c;

System.out.println (a + b + c);

}

Figure 7.9: Elimination of Dead Code

(JMP, L1)

(LBL, L2)

In general, a JMP atom should always be followed by a LBL atom. If this
is not the case, simply remove the intervening atoms between the JMP and the
next LBL.

Data flow analysis is a formal way of tracing the way information about data
items moves through the program and is used for many optimization techniques.
Though data flow analysis is beyond the scope of this text, we will look at some
of the optimizations that can result from this kind of analysis.

One such optimization technique is elimination of dead code, which involves
determining whether computations specified in the source program are actually
used and affect the program’s output. For example, the program in Figure 7.9
contains an assigment to the variable a which has no effect on the output since
a is not used subsequently, but prior to another assignment to the variable a.

Another optimization technique which makes use of data flow analysis is
the detection of loop invariants. A loop invariant is code within a loop which
deals with data values that remain constant as the loop repeats. Such code
can be moved outside the loop, causing improved run time without changing
the program’s semantics. An example of loop invariant code is the call to the
square root function (sqrt) in the program of Figure 7.10.

Since the value assigned to a is the same each time the loop repeats, there is
no need for it to be repeated; it can be done once before entering the loop (we
need to be sure, however, that the loop is certain to be executed at least once).
This optimization will eliminate 999 unnecessary calls to the sqrt function.

The remaining global optimization techniques to be examined in this section
all involve mathematical transformations. The student is cautioned that their
use is not universally recommended, and that it is often possible, by employing
them, that the compiler designer is effecting transformations which are unde-
sirable to the source programmer. For example, the question of the meaning
of arithmetic overflow is crucial here. If the unoptimized program reaches an
overflow condition for a particular input, is it valid for the optimized program
to avoid the overflow? (Be careful; most computers have run-time traps de-
signed to transfer control to handle conditions such as overflow. It could be
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{

for (int i=0; i<1000; i++)

{ a = sqrt (x); // loop invariant

vector[i] = i * a;

}

}

{

a = sqrt (x); // loop invariant

for (int i=0; i<1000; i++)

{

vector[i] = i * a;

}

}

Figure 7.10: Movement of Loop Invariant Code

that the programmer intended to trap certain input conditions.) There is no
right or wrong answer to this question, but it is an important consideration
when implementing optimization.

Constant folding is the process of detecting operations on constants, which
could be done at compile time rather than run time. An example is shown in
Figure 7.11 in which the value of the variable a is known to be 6, and the value
of the expression a * a is known to be 36. If these computations occur in a
small loop, constant folding can result in significant improvement in run time
(at the expense of a little compile time).

Another mathematical transformation is called reduction in strength. This
optimization results from the fact that certain operations require more time

{

a = 2 * 3; // a must be 6

b = c + a * a; // a*a must be 36

}

{

a = 6; // a must be 6

b = c + 36; // a*a must be 36

}

Figure 7.11: Constant Folding



240 CHAPTER 7. OPTIMIZATION

a + b == b + a Addition is commutative
(a + b) + c == a + (b + c) Addition is Associative
a * (b + c) == a * b + a * c Multiplication distributes over addition

Figure 7.12: Algebraic Identities

than others on virtually all architectures. For example, multiplication can be
expected to be significantly more time consuming than addition. Thus, the
multiplication 2 * x is likely to be slower than the addition x + x. Likewise, if
there is an exponentiation operator, x**2 is certain to be slower than x * x.

A similar use of reduction in strength involves using the shift instructions
available on most architectures to speed up fixed point multiplication and divi-
sion. A multiplication by a positive power of two is equivalent to a left shift,
and a division by a positive power of two is equivalent to a right shift. For
example, the multiplication x*8 can be done faster simply by shifting the value
of x three bit positions to the left, and the division x/32 can be done faster by
shifting the value of x five bit positions to the right.

Our final example of mathematical transformations involves algebraic trans-
formations using properties such as commutativity, associativity, and the dis-
tributive property, all summarized in Figure 7.12.

We do not believe that these properties are necessarily true when dealing
with computer arithmetic, due to the finite precision of numeric data. Never-
theless, they are employed in many compilers, so we give a brief discussion of
them here.

Though these properties are certainly true in mathematics, they do not nec-
essarily hold in computer arithmetic, which has finite precision and is subject
to overflow in both fixed-point and floating-point representations. Thus, the
decision to make use of these properties must take into consideration the pro-
grams which will behave differently with optimization put into effect. At the
very least, a warning to the user is recommended for the compiler’s user manual.

The discussion of common subexpresssions in Section 7.2.1 would not have
recognized any common subexpressions in the following:

a = b + c;

b = c + d + b;

but by employing the commutative property, we can eliminate an unnecessary
computation of b + c

a = b + c;

b = a + d;

A multiplication operation can be eliminated from the expression a * c + b *

c by using the distributive property to obtain (a + b) * c.
Compiler writers who employ these techniques create more efficient programs

for the large number of programmers who want and appreciate the improve-
ments, but risk generating unwanted code for the small number of programmers
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who require that algebraic expressions be evaluated exactly as specified in the
source program.

Sample Problem 7.2.2

Use the methods of unreachable code, constant folding, reduction
in strength, loop invariants, and dead code to optimize the following
atom stream; you may assume that the TST condition is initially
not satisfied:

(LBL, L1)

(TST, a, b,, 1, L2)

(SUB, a, 1, a)

(MUL, x, 2, b)

(ADD, x, y, z)

(ADD, 2, 3, z)

(JMP, L1)

(SUB, a, b, a)

(MUL, x, 2, z)

(LBL, L2)

Solution:

(LBL, L1)

(TST, a, b,, 1, L2)

(SUB, a, 1, a)

(MUL, x, 2, b) Reduction in strength
(ADD, x, y, z) Elimination of dead code
(ADD, 2, 3, z) Constant folding, loop invariant
(JMP, L1)

(SUB, a, b, a) Unreachable code
(MUL, x, 2, z) Unreachable code
(LBL, L2)

(MOV, 5,, z)

(LBL, L1)

(TST, a, b,, 1, L2)

(SUB, a, 1, a)
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(ADD, x, x, b)

(JMP, L1)

(LBL, L2)

7.2.3 Exercises

1. Eliminate common subexpressions from each of the following strings of
atoms, using DAGs as shown in Sample Problem ?? (we also give the
Java expressions from which the atom strings were generated):

(a) (b + c) * d * (b + c)

(ADD, b, c, T1)

(MUL, T1, d, T2)

(ADD, b, c, T3)

(MUL, T2, T3, T4)

(b) (a + b) * c / ((a + b) * c - d)

(ADD, a, b, T1)

(MUL, T1, c, T2)

(ADD, a, b, T3)

(MUL, T3, c, T4)

(SUB, T4, d, T5)

(DIV, T2, T5, T6)

(c) (a + b) * (a + b) - (a + b) * (a + b)

(ADD, a, b, T1)

(ADD, a, b, T2)

(MUL, T1, T2, T3)

(ADD, a, b, T4)

(ADD, a, b, T5)

(MUL, T4, T5, T6)

(SUB, T3, T6, T7)

(d) ((a + b) + c) / (a + b + c) - (a + b + c)
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(ADD, a, b, T1)

(ADD, T1, c, T2)

(ADD, a, b, T3)

(ADD, T3, c, T4)

(DIV, T2, T4, T5)

(ADD, a, b, T6)

(ADD, T6, c, T7)

(SUB, T5, T7, T8)

(e) a / b - c / d - e / f

(DIV, a, b, T1)

(DIV, c, d, T2)

(SUB, T1, T2, T3)

(DIV, e, f, T4)

(SUB, T3, T4, T5)

2. How many different atom sequences can be generated from the DAG given
in your response to Problem 1 (e), above?

3. In each of the following sequences of atoms, eliminate the unreachable
atoms: (a)

(ADD, a, b, T1)

(LBL, L1)

(SUB, b, a, b)

(TST, a, b,, 1, L1)

(ADD, a, b, T3)

(JMP, L1)

(b)

(ADD, a, b, T1)

(LBL, L1)

(SUB, b, a, b)

(JMP, L1)

(ADD, a, b, T3)

(LBL, L2)

(c)

(JMP, L2)

(ADD, a, b, T1)

(TST, a, b,, 3, L2)
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(SUB, b, b, T3)

(LBL, L2)

(MUL, a, b, T4)

4. In each of the following Java methods, eliminate statements which consti-
tute dead code.

(a)

int f (int d)

{ int a,b,c;

a = 3;

b = 4;

d = a * b + d;

return d;

}

(b)

int f (int d)

{ int a,b,c;

a = 3;

b = 4;

c = a +b;

d = a + b;

a = b + c * d;

b = a + c;

return d;

}

5. In each of the following Java program segments, optimize the loops by
moving loop invariant code outside the loop:

(a)

{ for (i=0; i<100; i++)

{ a = x[i] + 2 * a;

b = x[i];

c = sqrt (100 * c);

}

}

(b)

{ for (j=0; j<50; j++)

{ a = sqrt (x);

n = n * 2;
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for (i=0; i<10; i++)

{ y = x;

b[n] = 0;

b[i] = 0;

}

}

}

6. Show how constant folding can be used to optimize the following Java
program segments:

(a)

a = 2 + 3 * 8;

b = b + (a - 3);

(b)

int f (int c)

{ final int a = 44;

final int b = a - 12;

c = a + b - 7;

return c;

}

7. Use reduction in strength to optimize the following sequences of atoms.
Assume that there are (SHL, x, y, z) and (SHR, x, y, z) atoms which
will shift x left or right respectively by y bit positions, leaving the result
in z (also assume that these are fixed-point operations):

(a)

(MUL, x, 2, T1)

(MUL, y, 2, T2)

(b)

(MUL, x, 8, T1)

(DIV, y, 16, T2)

8. Which of the following optimization techniques, when applied successfully,
will always result in improved execution time? Which will result in reduced
program size?

(a) Detection of common subexpressions with DAGs

(b) Elimination of unreachable code

(c) Elimination of dead code

(d) Movement of loop invariants outside of loop

(e) Constant folding

(f) Reduction in strength
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7.3 Local Optimization

In this section we discuss local optimization techniques. The definition of local
versus global techniques varies considerably among compiler design textbooks.
Our view is that any optimization which is applied to the generated code is
considered local. Local optimization techniques are often called peephole op-
timization, since they generally involve transformations on instructions which
are close together in the object program. The student can visualize them as if
peering through a small peephole at the generated code.

There are three types of local optimization techniques which will be dis-
cussed here: load/store optimization, jump over jump optimization, and simple
algebraic optimization. In addition, register allocation schemes such as the one
discussed in Section 6.4 could be considered local optimization, though they are
generally handled in the code generator itself.

The parser would translate the expression a + b - c into the following stream
of atoms:

(ADD, a, b, T1)

(SUB, T1, c, T2)

The simplest code generator design, as presented in Chapter 6, would gen-
erate three instructions corresponding to each atom:

1. Load the first operand into a register (LOD)

2. Perform the operation

3. Store the result back to memory (STO).

The code generator would then produce the following instructions from the
atoms:

LOD R1,a

ADD R1,b

STO R1,T1

LOD R1,T1

SUB R1,c

STO R1,T2

Notice that the third and fourth instructions in this sequence are entirely
unnecessary since the value being stored and loaded is already at its destina-
tion. The above sequence of six instructions can be optimized to the following
sequence of four instructions by eliminating the intermediate Load and Store
instructions as shown below:
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LOD R1,a

ADD R1,b

SUB R1,c

STO R1,T2

For lack of a better term, we call this a load/store optimization. It is clearly
machine dependent.

Another local optimization technique, which we call a jump over jump
optimization, is very common and has to do with unnecessary jumps. The
student has already seen examples in Chapter 4 of conditional jumps in which
it is clear that greater efficiency can be obtained by rewriting the conditional
logic. A good example of this can be found in a Java compiler for the statement
if (a¿b) a = b;. It might be translated into the following stream of atoms:

(TST, a, b,, 3, L1)

(JMP, L2)

(LBL, L1)

(MOV, b,, a)

(LBL, L2)

A reading of this atom stream is ”Test for a greater than b, and if true, jump
to the assignment. Otherwise, jump around the assignment.” The reason for
this somewhat convoluted logic is that the TST atom uses the same comparison
code found in the expression. The instructions generated by the code generator
from this atom stream would be:

LOD R1,a

CMP R1,b,3 //Is R1 > b?

JMP L1

CMP 0,0,0 // Unconditional Jump

JMP L2

L1:

LOD R1,b

STO R1,a

L2:

It is not necessary to implement this logic with two Jump instructions. We
can improve this code significantly by testing for the condition to be false rather
than true, as shown below:
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LOD R1,a

CMP R1,b,4 // Is R1 <= b?

JMP L1

LOD R1,b

STO R1,a

L1:

This optimization could have occurred in the intermediate form (i.e., we
could have considered it a global optimization), but this kind of jump over
jump can occur for various other reasons. For example, in some architectures,
a conditional jump is a short jump (to a restricted range of addresses), and an
unconditional jump is a long jump. Thus, it is not known until code has been
generated whether the target of a conditional jump is within reach, or whether
an unconditional jump is needed to jump that far.

The final example of local optimization techniques involves simple algebraic
transformations which are machine dependent and are called simple algebraic
optimizations. For example, the following instructions can be eliminated:

MUL R1, 1

ADD R1, 0

because multiplying a value by 1, or adding 0 to a value, should not change that
value. (Be sure, though, that the instruction has not been inserted to alter the
condition code or flags register.) In addition, the instruction (MUL R1, 0) can
be improved by replacing it with (CLR R1), because the result will always be 0
(this is actually a reduction in strength transformation).

7.3.1 Exercises

1. Optimize each of the following code segments for unnecessary Load/Store
instructions:

(a) (b)

LOD R1,a LOD R1,a

ADD R1,b LOD R2,c

STO R1,T1 ADD R1,b

LOD R1,T1 ADD R2,b

SUB R1,c STO R2,T1

STO R1,T2 ADD R1,c

LOD R1,T2 LOD R2,T1

STO R1,d STO R1,T2

STO R2,c
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2. Optimize each of the following code segments for unnecessary jump over
jump instructions:

(a) (b)

CMP R1,a,1 CMP R1,a,5

JMP L1 JMP L1

CMP 0,0,0 CMP 0,0,0

JMP L2 JMP L2

L1: L1:

ADD R1,R2 SUB R1,a

L2: L2:

(c)

L1:

ADD R1,R2

CMP R1,R2,3

JMP L2

CMP 0,0,0

JMP L1

L2:

3. Use any of the local optimization methods of this section to optimize the
following code segment:

CMP R1,R2,6 // JMP if R1 != R2

JMP L1

CMP 0,0,0

JMP L2

L1:

LOD R2,a

ADD R2,b

STO R2,T1

LOD R2,T1

MUL R2,c

STO R2,T2

LOD R2,T2

STO R2,d

SUB R1,0

STO R1,b

L2:
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7.4 Chapter Summary

Optimization has to do with the improvement of machine code and/or inter-
mediate code generated by other phases of the compiler. These improvements
can result in reduced run time and/or space for the object program. There are
two main classifications of optimization: global and local. Global optimization
operates on atoms or syntax trees put out by the front end of the compiler, and
local optimization operates on instructions put out by the code generator. The
term optimization is used for this phase of the compiler, even though it is never
certain to produce optimal code in either space or time.

The compiler writer must be careful not to change the intent of the program
when applying optimizing techniques. Many of these techniques can have a
profound effect on debugging tools; consequently, debugging is generally done
on unoptimized code.

Global optimization is applied to blocks of code in the intermediate form
(atoms) which contain no Label or branch atoms. These are called basic blocks,
and they can be represented by directed acyclic graphs (DAGs), in which each
interior node represents an operation with links to its operands. We show how
the DAGs can be used to optimize common subexpressions in an arithmetic
expression.

We briefly describe a few more global optimization techniques without going
into the details of their implementation. They include: (1) unreachable code
- code which can never be executed and can therefore be eliminated; (2) dead
code - code which may be executed but can not have any effect on the program’s
output and can therefore be eliminated; (3) loop invariant code - code which
is inside a loop, but which doesn’t really need to be in the loop and can be
moved out of the loop; (4) constant folding: detecting arithmetic operations
on constants which can be computed at compile time rather than at run time;
(5) reduction in strength: substituting a faster arithmetic operation for a slow
one; (6) algebraic transformations: transformations involving the commutative,
associative, and distributive properties of arithmetic.

We describe three types of local optimization: (1) load/store optimization
- eliminating unnecessary Load and Store instructions in a Load/Store archi-
tecture; (2) jump over jump optimizations - replacing two Jump instructions
with a single Jump by inverting the logic; (3) simple algebraic optimization -
eliminating an addition or subtraction of 0 or a multiplication or division by 1.

These optimization techniques are optional, but they are used in most mod-
ern compilers because of the resultant improvements to the object program,
which are significant.



Glossary

absolute addressing - An address mode in the Mini architecture which stores
a complete memory address in a single instruction field.

action - An executable statement or procedure, often used in association
with an automaton or program specification tool.

action symbols - Symbols in a translation grammar enclosed in {braces}
and used to indicate output or a procedure call during the parse.

action table - A table in LR parsing algorithms which is used to determine
whether a shift or reduce operation is to be performed.

algebraic transformations - An optimization technique which makes use
of algebraic properties, such as commutativity and associativity to simplify
arithmetic expressions.

alphabet - A set of characters used to make up the strings in a given
language.

ambiguous grammar - A grammar which permits more than one deriva-
tion tree for a particular input string.

architecture - The definition of a computer’s central processing unit as seen
by a machine language programmer, including specifications of instruction set
operations, instruction formats, addressing modes, data formats, CPU registers,
and input/output instruction interrupts and traps.

arithmetic expressions - Infix expressions involving numeric constants,
variables, arithmetic operations, and parentheses.

atom - A record put out by the syntax analysis phase of a compiler which
specifies a primitive operation and operands.

attributed grammar - A grammar in which each symbol may have zero or
more attributes, denoted with subscripts, and each rule may have zero or more
attribute computation rules associated with it.

automata theory - The branch of computer science having to do with
theoretical machines.

back end - The last few phases of the compiler, code generation and opti-
mization, which are machine dependent.
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balanced binary search tree - A binary search tree in which the difference
in the heights of both subtrees of each node does not exceed a given constant.

basic block - A group of atoms or intermediate code which contains no
label or branch code.

binary search tree - A connected data structure in which each node has,
at most, two links and there are no cycles; it must also have the property that
the nodes are ordered, with all of the nodes in the left subtree preceding the
node, and all of the nodes in the right subtree following the node.

bison - A public domain version of yacc.

bootstrapping - The process of using a program as input to itself, as in
compiler development, through a series of increasingly larger subsets of the
source language.

bottom up parsing - Finding the structure of a string in a way that
produces or traverses the derivation tree from bottom to top.

byte code - The intermediate form put out by a java compiler.

closure - Another term for the Kleene * operation.

code generation - The phase of the compiler which produces machine
language object code from syntax trees or atoms.

comment - Text in a source program which is ignored by the compiler, and
is for the programmer’s reference only.

compile time - The time at which a program is compiled, as opposed to
run time. Also, the time required for compilation of a program.

compiler - A software translator which accepts, as input, a program writ-
ten in a particular high-level language and produces, as output, an equivalent
program in machine language for a particular machine.

compiler-compiler - A program which accepts, as input, the specifications
of a programming language and the specifications of a target machine, and
produces, as output, a compiler for the specified language and machine.

conflict - In bottom up parsing, the failure of the algorithm to find an
appropriate shift or reduce operation.

constant folding - An optimization technique which involves detecting
operations on constants, which could be done at compile time rather than at
run time.

context-free grammar - A grammar in which the left side of each rule
consists of a nonterminal being rewritten (type 2).

context-free language - A language which can be specified by a context-
free grammar.

context-sensitive grammar - A grammar in which the left side of each
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rule consists of a nonterminal being rewritten, along with left and right context,
which may be null (type 1).

context-sensitive language - A language which can be specified by a
context-sensitive grammar.

conventional machine language - The language in which a computer
architecture can be programmed, as distinguished from a microcode language.

cross compiling - The process of generating a compiler for a new computer
architecture, automatically.

DAG - Directed acyclic graph.

data flow analysis - A formal method for tracing the way information
about data objects flows through a program, used in optimization.

dead code - Code, usually in an intermediate code string, which can be
removed because it has no effect on the output or final results of a program.

derivation - A sequence of applications of rewriting rules of a grammar,
beginning with the starting nonterminal and ending with a string of terminal
symbols.

derivation tree - A tree showing a derivation for a context-free grammar, in
which the interior nodes represent nonterminal symbols and the leaves represent
terminal symbols.

deterministic - Having the property that every operation can be completely
and uniquely determined, given the inputs (as applied to a machine).

deterministic context-free language - A context-free language which
can be accepted by a deterministic pushdown machine.

directed acyclic graph (DAG) - A graph consisting of nodes connected
with one-directional arcs, in which there is no path from any node back to itself.

disjoint - Not intersecting.

embedded actions - In a yacc grammar rule, an action which is not at the
end of the rule.

empty set - The set containing no elements.

endmarker - A symbol, N, used to mark the end of an input string (used
here with pushdown machines).

equivalent grammars - Grammars which specify the same language.

equivalent programs - Programs which have the same input/output rela-
tion.

example (of a nonterminal) - A string of input symbols which may be
derived from a particular nonterminal.

expression - A language construct consisting of an operation and zero, one,
or two operands, each of which may be an object or expression.
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extended pushdown machine - A pushdown machine which uses the
replace operation.

extended pushdown translator - A pushdown machine which has both
an output function and a replace operation.

finite state machine - A theoretical machine consisting of a finite set of
states, a finite input alphabet, and a state transition function which specifies
the machine’s state, given its present state and the current input.

follow set (of a nonterminal, A) - The set of all terminals (or endmarker)
which can immediately follow the nonterminal A in a sentential form derived
from S.

formal language - A language which can be defined by a precise specifica-
tion.

front end - The first few phases of the compiler, lexical and syntax analysis,
which are machine independent.

global optimization - Improvement of intermediate code in space and/or
time.

goto table - A table in LR parsing algorithms which determines which stack
symbol is to be pushed when a reduce operation is performed.

grammar - A language specification system consisting of a finite set of
rewriting rules involving terminal and nonterminal symbols.

handle - The string of symbols on the parsing stack, which matches the
right side of a grammar rule in order for a reduce operation to be performed, in
a bottom up parsing algorithm.

hash function - A computation using the value of an item to be stored in
a table, to determine the item’s location in the table.

hash table - A data structure in which the location of a node’s entry is
determined by a computation on the node value, called a hash function.

Helper - A macro in SableCC, used to facilitate the definition of tokens.

high-level language - A programming language which permits operations,
control structures, and data structures more complex than those available on a
typical computer architecture.

identifier - A word in a source program representing a data object, type,
or procedure.

Ignored Tokens - The section of a Sablecc specification in which unused
tokens may be declared.

implementation language - The language in which a compiler exists.

inherited attributes - Those attributes in an attributed grammar which
receive values from nodes on the same or higher levels in the derivation tree.
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input alphabet - The alphabet of characters used to make up the strings
in a given language.

intermediate form - A language somewhere between the source and object
languages.

interpreter - A programming language processor which carries out the in-
tended operations, rather than producing, as output, an object program.

jump over jump optimization - The process of eliminating unnecessary
Jump instructions.

keyword - A word in a source program, usually alphanumeric, which has a
predefined meaning to the compiler.

language - A set of strings.

left recursion - The grammar property that the right side of a rule begins
with the same nonterminal that is being defined by that rule.

left-most derivation - A derivation for a context-free grammar, in which
the left-most nonterminal is always rewritten.

lex - A lexical analyzer generator utility in the Unix programming environ-
ment which uses regular expressions to define patterns.

lexeme - The output of the lexical analyzer representing a single word in
the source program; a lexical token.

lexical analysis - The first phase of the compiler, in which words in the
source program are converted to a sequence of tokens representing entities such
as keywords, numeric constants, identifiers, operators, etc.

LL(1) grammar - A grammar in which all rules defining the same nonter-
minal have disjoint selection sets.

LL(1) language - A language which can be described by an LL(1) grammar.

load/store architecture - A computer architecture in which data must be
loaded into a CPU register before performing operations.

load/store optimization - The process of eliminating unnecessary Load
and Store operations.

local optimization - Optimization applied to object code, usually by ex-
amining relatively small blocks of code.

loop invariant - A statement or construct which is independent of, or static
within, a particular loop structure.

LR - A class of bottom up parsing algorithms in which the input string is
read from the left, and a right-most derivation is found.

LR(k) - An LR parsing algorithm which looks ahead at most k input sym-
bols.
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method - In Java, a sub-program with zero or more parameters, belonging
to a particular class.

multiple pass code generator - A code generator which reads the the
intermediate code string more than once, to handle forward references.

multiple pass compiler - A compiler which scans the source program more
than once.

natural language - A language used by people, which cannot be defined
perfectly with a precise specification system.

newline - A character, usually entered into the computer as a Return or
Enter key, which indicates the end of a line on an output device. Internally, it
is usually coded as some combination of 10 and/or 13.

nondeterministic - Not deterministic; i.e., having the property that an
input could result in any one of several operations, or that an input could result
in no specified operation (as applied to a machine).

nonterminal symbol - A symbol used in the rewriting rules of a grammar,
which is not a terminal symbol.

normal form - A method for choosing a unique member of an equivalence
class; left-most (or right-most) derivations are a normal form for context-free
derivations.

null string - The string consisting of zero characters.

nullable nonterminal - A nonterminal from which the null string can be
derived.

nullable rule - A grammar rule which can be used to derive the null string.

object language - The language of the target machine; the output of the
compiler is a program in this language.

object program - A program produced as the output of the compiler.

operator - A source language symbol used to specify an arithmetic, assign-
ment, comparison, logical, or other operation involving one or two operands.

optimization - The process of improving generated code in run time and/or
space.

p-code - A standard intermediate form developed at the University of Cal-
ifornia at San Diego.

palindrome - A string which reads the same from left to right as it does
from right to left.

parse - A description of the structure of a valid string in a formal language,
or to find such a description.

parser - The syntax analysis phase of a compiler.
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parsing algorithm - An algorithm which solves the parsing problem for a
particular class of grammars.

parsing problem - Given a grammar and an input string, determine whether
the string is in the language of the grammar and, if so, find its structure (as in
a derivation tree, for example).

pop - A pushdown machine operation used to remove a stack symbol from
the top of the stack.

postfix traversal - A tree-scanning algorithm in which the children of a
node are visited, followed by the node itself; used to generate object code from
a syntax tree.

production - A rewriting rule in a grammar.

Productions - The section of a Sablecc specification in which productions
(i.e. grammar rules) are specified.

programming language - A language used to specify a sequence of oper-
ations to be performed by a computer.

push - A pushdown machine operation used to place a stack symbol on top
of the stack.

pushdown machine - A finite state machine, with an infinite last-in first-
out stack; the top stack symbol, current state, and current input are used to
determine the next state.

pushdown translator - A pushdown machine with an output function,
used to translate input strings into output strings.

quasi-simple grammar - A simple grammar which permits rules rewritten
as the null string, as long as the follow set is disjoint with the selection sets of
other rules defining the same nonterminal.

quasi-simple language - A language which can be described with a quasi-
simple grammar.

recursive descent - A top down parsing algorithm in which there is a
procedure for each nonterminal symbol in the grammar.

reduce/reduce conflict - In bottom up parsing, the failure of the algorithm
to determine which of two or more reduce operations is to be performed in a
particular stack and input configuration.

reduce operation - The operation of replacing 0 or more symbols on the
top of the parsing stack with a nonterminal grammar symbol, in a bottom up
parsing algorithm.

reduction in strength - The process of replacing a complex operation
with an equivalent, but simpler, operation during optimization.

reflexive transitive closure (of a relation) - The relation, R’, formed
from a given relation, R, including all pairs in the given relation, all reflexive
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pairs (a R’ a), and all transitive pairs (a R’ c if a R’ b and b R’ c).

register allocation - The process of assigning a purpose to a particular
register, or binding a register to a source program variable or compiler variable,
so that for a certain range or scope of instructions that register can be used to
store no other data.

register-displacement addressing - An address mode in which a com-
plete memory address is formed by adding the contents of a CPU register to the
value of the displacement instruction field.

regular expression - An expression involving three operations on sets of
strings: union, concatenation, and Kleene * (also known as closure).

relation - A set of ordered pairs.

replace - An extended pushdown machine operation, equivalent to a pop
operation, followed by zero or more push operations.

reserved word - A key word which is not available to the programmer for
use as an identifier.

rewriting rule - The component of a grammar which specifies how a string
of nonterminal and terminal symbols may be rewritten as another string of
nonterminals and terminals. Also called a production.

right linear grammar - A grammar in which the left side of each rule is
a single nonterminal and the right side of each rule is either a terminal or a
terminal followed by a nonterminal (type 3).

right linear language - A language which can be specified by a right linear
grammar.

right-most derivation - A derivation for a context-free grammar, in which
the right-most nonterminal symbol is always the one rewritten.

run time - The time at which an object program is executed, as opposed
to compile time.

SableCC - An object-oriented, Java-based compiler generator.

scanner - The phase of the compiler which performs lexical analysis.

selection set - The set of terminals which may be used to direct a top down
parser to apply a particular grammar rule.

semantic analysis - That portion of the compiler which generates interme-
diate code and which attempts to find non-syntactic errors by checking types
and declarations of identifiers.

semantics - The intent, or meaning, of an input string.

sentential form - An intermediate form in a derivation which may contain
nonterminal symbols.

set - A collection of unique objects.
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shift operation - The operation of pushing an input symbol onto the pars-
ing stack, and advancing to the next input symbol, in a bottom up parsing
algorithm.

shift reduce parser - A bottom up parsing algorithm which uses a sequence
of shift and reduce operations to transform an acceptable input string to the
starting nonterminal of a given grammar.

shift/reduce conflict - In bottom up parsing, the failure of the algorithm to
determine whether a shift or reduce operation is to be performed in a particular
stack and input configuration.

simple algebraic optimization - The elimination of instructions which
add 0 to or multiply 1 by a number.

simple grammar - A grammar in which the right side of every rule begins
with a terminal symbol, and all rules defining the same nonterminal begin with
a different terminal.

simple language - A language which can be described with a simple gram-
mar.

single pass code generator - A code generator which keeps a fixup table
for forward references, and thus needs to read the intermediate code string only
once.

single pass compiler - A compiler which scans the source program only
once.

source language - The language in which programs may be written and
used as input to a compiler.

source program - A program in the source language, intended as input to
a compiler.

state - A machine’s status, or memory/register values. Also, in SableCC,
the present status of the scanner.

States - The section of a Sablecc specification in which lexical states may
be defined.

starting nonterminal - The nonterminal in a grammar from which all
derivations begin.

stdin - In Unix or MSDOS, the standard input file, normally directed to the
keyboard.

stdout - In Unix or MSDOS, the standard output file, normally directed to
the user.

string - A list or sequence of characters from a given alphabet.

string space - A memory buffer used to store string constants and possibly
identifier names or key words.
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symbol table - A data structure used to store identifiers and possibly other
lexical entities during compilation.

syntax - The specification of correctly formed strings in a language, or the
correctly formed programs of a programming language.

syntax analysis - The phase of the compiler which checks for syntax errors
in the source program, using, as input, tokens put out by the lexical phase and
producing, as output, a stream of atoms or syntax trees.

syntax directed translation - A translation in which a parser or syntax
specification is used to specify output as well as syntax.

syntax tree - A tree data structure showing the structure of a source pro-
gram or statement, in which the leaves represent operands, and the internal
nodes represent operations or control structures.

synthesized attributes - Those attributes in an attributed grammar which
receive values from lower nodes in the derivation tree.

target machine - The machine for which the output of a compiler is in-
tended.

terminal symbol - A symbol in the input alphabet of a language specified
by a grammar.

token - The output of the lexical analyzer representing a single word in the
source program.

Tokens - The section of a Sablecc specification in which tokens are defined.

top down parsing - Finding the structure of a string in a way that produces
or traverses the derivation tree from top to bottom.

Translation class - An extension of the DepthFirstAdapter class generated
by SableCC. It is used to implement actions in a translation grammar.

translation grammar - A grammar which specifies output for some or all
input strings.

underlying grammar - The grammar resulting when all action symbols
are removed from a translation grammar.

unreachable code - Code, usually in an intermediate code string, which
can never be executed.

unrestricted grammar - A grammar in which there are no restrictions on
the form of the rewriting rules (type 0).

unrestricted language - A language which can be specified by an unre-
stricted grammar.

white space - Blank, tab, or newline characters which appear as nothing
on an output device.
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yacc - (Yet Another Compiler-Compiler) A parser generator utility in the
Unix programming environment which uses a grammar to specify syntax.
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Appendix A - Decaf
Grammar

In this appendix, we give a description and grammar of the source language
that we call ”Decaf.” Decaf is a simple subset of the standard Java language.
It does not include arrays, structs, unions, files, sets, switch statements, do
statements, classs definitions, methods, or or many of the low level operators.
The only data types permitted are int and float. A complete grammar for Decaf
is shown below, and it is similar to the SableCC grammar used in the compiler
in Appendix B. Here we use the convention that symbols beginning with upper-
case letters are nonterminals, and all other symbols are terminals (i.e., lexical
tokens). As in BNF, we use the vertical bar | to indicate alternate definitions
for a nonterminal.

Program→ class identifier { public static void main (String[] identifier)
CompoundStmt }

Declaration → Type IdentList ;
Type → int

| float
IdentList → identifier , IdentList

| identifier
Stmt → AssignStmt

| ForStmt
| WhileStmt
| IfStmt
| CompoundStmt
| Declaration
| NullStmt

AssignStmt → AssignExpr ;
ForStmt → for ( OptAssignExpr; OptBoolExpr ; OptAssignExpr ) Stmt
OptAssignExpr → AssignExpr

|ǫ
OptBoolExpr → BoolExpr

|ǫ
WhileStmt → while ( BoolExpr ) Stmt
IfStmt → if ( BoolExpr ) Stmt ElsePart
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ElsePart→ else Stmt
|ǫ

CompoundStmt→ { StmtList }
StmtList → StmtList Stmt

|ǫ
NullStmt → ;
BoolExpr → Expr Compare Expr
Compare → ==

| <
| >
| <=
| >=
|! =

Expr → AssignExpr
| Rvalue

AssignExpr → identifier = Expr
Rvalue → Rvalue + Term

| Rvalue - Term
| Term

Term → Term * Factor
| Term / Factor
| Factor

Factor → ( Expr )
| - Factor
| + Factor
| identifier
| number

This grammar is used in Appendix B as a starting point for the SableCC
grammar for our Decaf compiler, with some modifications. It is not unusual for
a compiler writer to make changes to the given grammar (which is descriptive of
the source language) to obtain an equivalent grammar which is more amenable
for parsing. Decaf is clearly a very limited programming language, yet despite
its limitations it can be used to program some useful applications. For example,
a Decaf program to compute the cosine function is shown in Figure A.1.
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class AClass {

public static void main (String[] args)

{float cos, x, n, term, eps, alt;

// compute the cosine of x to within tolerance eps

// use an alternating series

x = 3.14159;

eps = 0.1;

n = 1;

cos = 1;

term = 1;

alt = -1;

while (term>eps)

{

term = term * x * x / n / (n+1);

cos = cos + alt * term;

alt = -alt;

n = n + 2;

}

}

}

Figure A.1: Decaf program to compute the cosine function using a Taylor series



Appendix B - Decaf
Compiler

B.1 Installing Decaf

The compiler for Decaf shown in this appendix is implemented using SableCC.
The bottom-up parser produces a syntax tree, which when visited by the Trans-
lation class, puts out a file of atoms, which forms the input to the code generator,
written as a separate C program. The code generator puts out hex bytes to std-
out (the standard output file), one instruction per line. This output can be
displayed on the monitor, stored in a file, or piped into the Mini simulator and
executed.

This software is available in source code from the author via the Internet.
The file names included in this package are, at the time of this printing:

decaf.grammar Grammar file, input to SableCC
Translation.java Class to implement a translation from syntax tree to atoms
Compiler.java Class containing a main method, to invoke the parser

and translator.
Atom.java Class to define an atom
AtomFile.java Class to define the file storing atoms
gen.c Code generator
mini.c Target machine simulator
mini.h Header file for simulator
miniC.h Header file for simulator
cos.decaf Decaf program to compute the cosine function
bisect.decaf Decaf program to compute the square root of two by bisection
exp.decaf Decaf program to compute ex.
fact.decaf Decaf program to compute the factorial function
compile Script to compile a decaf program and write code to stdout
compileAndGo Script to compile a decaf program and execute the resulting

code with the mini simulator.

The source files are available at: http://cs.rowan.edu/~bergmann/books/java/decaf
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These are all plain text files, so you should be able to simply choose File |
Save As from your browser window. Create a subdirectory named decaf, and
download the files *.java to the decaf subdirectory. Download all other files into
your current directory (i.e. the parent of decaf).

To build the Decaf compiler, there are two steps (from the directory con-
taining decaf.grammar). First generate the parser, lexer, analysis, and node
classes (the exact form of this command could depend on how SableCC has
been installed on your system):

$ sablecc decaf.grammar
The second step is to compile the java classes that were not generated by

SableCC:
$ javac decaf/*.java
You now have a Decaf compiler; the main method is in decaf/Compiler.class.

To compile a decaf program, say cos.decaf, invoke the compiler, and redirect
stdin to the decaf source file:

$ java decaf.Compiler < cos.decaf
This will create a file named atoms, which is the the result of translating

cos.decaf into atoms. To create machine code for the mini architecture, and
execute it with a simulator, you will need to compile the code generator, and
the simulator, both of which are written in standard C:

$ cc gen.c -o gen

$ cc mini.c -o mini

Now you can generate mini code, and execute it. Simply invoke the code
generator, which reads from the file atoms, and writes mini instructions to
stdout. You can pipe these instructions into the mini machine simulator:

$ gen | mini
The above can be simplified by using the scripts provided. To compile the

file cos.decaf, without executing, use the compile script:
$ compile cos
To compile and execute, use the compileAndGo script:
$ compileAndGo cos
This software was developed and tested using a Sun V480 running Solaris

10. The reader is welcome to adapt it for use on Windows and other systems.
A flow graph indicating the relationships of these files is shown in Figure B.2
in which input and output file names are shown in rectangles. The source
files are shown in Appendix B.2, below, with updated versions available at
http://cs.rowan.edu/~bergmann/books.

B.2 Source Code for Decaf

In this section we show the source code for the Decaf compiler. An updated
version may be obtained at http://cs.rowan.edu/∼bergmann/books The first
source file is the grammar file for Decaf, used as input to SableCC. This is
described in section 5.5.

http://cs.rowan.edu/~bergmann/books


268 APPENDIX B - DECAF COMPILER

language.grammar

sablecc Compiler.java

parser lexer node analysis javac

Translation.java
aProgram.decaf

(stdin)
Compiler.class

javac java

Translation.class atoms constants

gen

stdout
(minicode)

mini

stdout
(simulationdisplay)

Figure B.2: Flow Diagram to Compile and Execute a Decaf Program
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// decaf.grammar

// SableCC grammar for decaf, a subset of Java.

// March 2003, sdb

Package decaf;

Helpers // Examples

letter = [’a’..’z’] | [’A’..’Z’] ; // w

digit = [’0’..’9’] ; // 3

digits = digit+ ; // 2040099

exp = [’e’ + ’E’] [’+’ + ’-’]? digits; // E-34

newline = [10 + 13] ;

non_star = [[0..0xffff] - ’*’];

non_slash = [[0..0xffff] - ’/’];

non_star_slash = [[0..0xffff] - [’*’ + ’/’]];

Tokens

comment1 = ’//’ [[0..0xffff]-newline]* newline ;

comment2 = ’/*’ non_star* ’*’

(non_star_slash non_star* ’*’+)* ’/’ ;

space = ’ ’ | 9 | newline ; // ’\t’=9 (tab)

clas = ’class’ ; // key words (reserved)

public = ’public’ ;

static = ’static’ ;

void = ’void’ ;

main = ’main’ ;

string = ’String’ ;

int = ’int’ ;

float = ’float’ ;

for = ’for’ ;

while = ’while’ ;

if = ’if’ ;

else = ’else’ ;

assign = ’=’ ;

compare = ’==’ | ’<’ | ’>’ | ’<=’ | ’>=’ | ’!=’ ;

plus = ’+’ ;

minus = ’-’ ;

mult = ’*’ ;

div = ’/’ ;

l_par = ’(’ ;

r_par = ’)’ ;

l_brace = ’{’ ;

r_brace = ’}’ ;

l_bracket = ’[’ ;
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r_bracket = ’]’ ;

comma = ’,’ ;

semi = ’;’ ;

identifier = letter (letter | digit | ’_’)* ;

number = (digits ’.’? digits? | ’.’digits) exp? ;

// Example: 2.043e+5

misc = [0..0xffff] ;

Ignored Tokens

comment1, comment2, space;

Productions

program = clas identifier l_brace public static

void main l_par string l_bracket

r_bracket [arg]: identifier r_par

compound_stmt r_brace ;

type = {int} int

| {float} float ;

declaration = type identifier identlist* semi;

identlist = comma identifier ;

stmt = {dcl} declaration

| {stmt_no_trlr} stmt_no_trailer

| {if_st} if_stmt

| {if_else_st} if_else_stmt

| {while_st} while_stmt

| {for_st} for_stmt

;

stmt_no_short_if = {stmt_no_trlr} stmt_no_trailer

| {if_else_no_short} if_else_stmt_no_short_if

| {while_no_short} while_stmt_no_short_if

| {for_no_short} for_stmt_no_short_if

;

stmt_no_trailer = {compound} compound_stmt

| {null} semi

| {assign} assign_stmt

;

assign_stmt = assign_expr semi

;

for_stmt = for l_par assign_expr? semi bool_expr?

[s2]: semi [a2]: assign_expr? r_par stmt ;

for_stmt_no_short_if = for l_par assign_expr? semi bool_expr? [s2]: semi [a2]:



B.2. SOURCE CODE FOR DECAF 271

assign_expr? r_par

stmt_no_short_if

;

while_stmt = while l_par bool_expr r_par stmt

;

while_stmt_no_short_if = while l_par bool_expr r_par

stmt_no_short_if

;

if_stmt = if l_par bool_expr r_par stmt

;

if_else_stmt = if l_par bool_expr r_par stmt_no_short_if else stmt

;

if_else_stmt_no_short_if = if l_par bool_expr r_par [if1]: stmt_no_short_if else

[if2]: stmt_no_short_if

;

compound_stmt = l_brace stmt* r_brace

;

bool_expr = expr compare [right]: expr

;

expr = {assn} assign_expr

| {rval} rvalue

;

assign_expr = identifier assign expr ;

rvalue = {plus} rvalue plus term

| {minus} rvalue minus term

| {term} term

;

term = {mult} term mult factor

| {div} term div factor

| {fac} factor

;

factor = {pars} l_par expr r_par

| {uplus} plus factor

| {uminus} minus factor

| {id} identifier

| {num} number

;

The file Translation.java is the Java class which visits every node in the
syntax tree and produces a file of atoms and a file of constants. It is described
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in section 5.5.

// Translation.java

// Translation class for decaf, a subset of Java.

// Output atoms from syntax tree

// sdb March 2003

// sdb updated May 2007

// to use generic maps instead of hashtables.

package decaf;

import decaf.analysis.*;

import decaf.node.*;

import java.util.*;

import java.io.*;

class Translation extends DepthFirstAdapter

{

// All stored values are doubles, key=node, value is memory loc or label number

Map <Node, Integer> hash = new HashMap <Node, Integer> (); // May 2007

Integer zero = new Integer (0);

Integer one = new Integer (1);

AtomFile out;

//////////////////////////////////////////////////

// Definition of Program

public void inAProgram (AProgram prog)

// The class name and main args need to be entered into symbol table

// to avoid error message.

// Also, open the atom file for output

{ identifiers.put (prog.getIdentifier().toString(), alloc()); // class name

identifiers.put (prog.getArg().toString(), alloc()); // main (args)

out = new AtomFile ("atoms");

}

public void outAProgram (AProgram prog)

// Write the run-time memory values to a file "constants".

// Close the binary file of atoms so it can be used for

// input by the code generator

{ outConstants();

out.close();

}



B.2. SOURCE CODE FOR DECAF 273

//////////////////////////////////////////////////

// Definitions of declaration and identlist

public void inADeclaration (ADeclaration node)

{ install (node.getIdentifier()); }

public void outAIdentlist (AIdentlist node)

{ install (node.getIdentifier()); }

void install (TIdentifier id)

// Install id into the symbol table

{ Integer loc;

loc = identifiers.get (id.toString());

if (loc==null)

identifiers.put (id.toString(), alloc());

else

System.err.println ("Error: " + id + " has already been declared ");

}

//////////////////////////////////////////////////

// Definition of for_stmt

public void caseAForStmt (AForStmt stmt)

{ Integer lbl1, lbl2, lbl3;

lbl1 = lalloc();

lbl2 = lalloc();

lbl3 = lalloc();

inAForStmt (stmt);

if (stmt.getFor() !=null) stmt.getFor().apply(this);

if (stmt.getLPar() !=null) stmt.getLPar().apply(this);

if (stmt.getAssignExpr()!=null) // initialize

{ stmt.getAssignExpr().apply(this);

atom ("LBL", lbl1);

}

if (stmt.getSemi() != null) stmt.getSemi().apply(this);

if (stmt.getBoolExpr() != null) // test for termination

{ stmt.getBoolExpr().apply(this);

atom ("JMP", lbl2);

atom ("LBL", lbl3);

}

if (stmt.getS2() != null) stmt.getS2().apply(this);

if (stmt.getA2() != null)

{ stmt.getA2().apply(this); // increment

atom ("JMP", lbl1);
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atom ("LBL", lbl2);

}

if (stmt.getRPar() != null) stmt.getRPar().apply(this);

if (stmt.getStmt() != null)

{ stmt.getStmt().apply(this);

atom ("JMP", lbl3);

atom ("LBL", (Integer) hash.get (stmt.getBoolExpr()));

}

outAForStmt(stmt);

}

public void caseAForStmtNoShortIf (AForStmtNoShortIf stmt)

{ Integer lbl1, lbl2, lbl3;

lbl1 = lalloc();

lbl2 = lalloc();

lbl3 = lalloc();

inAForStmtNoShortIf (stmt);

if (stmt.getFor() !=null) stmt.getFor().apply(this);

if (stmt.getLPar() !=null) stmt.getLPar().apply(this);

if (stmt.getAssignExpr()!=null) // initialize

{ stmt.getAssignExpr().apply(this);

atom ("LBL", lbl1);

}

if (stmt.getSemi() != null) stmt.getSemi().apply(this);

if (stmt.getBoolExpr() != null) // test for termination

{ stmt.getBoolExpr().apply(this);

atom ("JMP", lbl2);

atom ("LBL", lbl3);

}

if (stmt.getS2() != null) stmt.getS2().apply(this);

if (stmt.getA2() != null)

{ stmt.getA2().apply(this); // increment

atom ("JMP", lbl1);

atom ("LBL", lbl2);

}

if (stmt.getRPar() != null) stmt.getRPar().apply(this);

if (stmt.getStmtNoShortIf() != null)

{ stmt.getStmtNoShortIf().apply(this);

atom ("JMP", lbl3);

atom ("LBL", (Integer) hash.get (stmt.getBoolExpr()));

}

outAForStmtNoShortIf (stmt);

}

//////////////////////////////////////////////////

// Definition of while_stmt
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public void inAWhileStmt (AWhileStmt stmt)

{ Integer lbl = lalloc();

hash.put (stmt, lbl);

atom ("LBL", lbl);

}

public void outAWhileStmt (AWhileStmt stmt)

{ atom ("JMP", (Integer) hash.get(stmt));

atom ("LBL", (Integer) hash.get (stmt.getBoolExpr()));

}

public void inAWhileStmtNoShortIf (AWhileStmtNoShortIf stmt)

{ Integer lbl = lalloc();

hash.put (stmt, lbl);

atom ("LBL", lbl);

}

public void outAWhileStmtNoShortIf (AWhileStmtNoShortIf stmt)

{ atom ("JMP", (Integer) hash.get(stmt));

atom ("LBL", (Integer) hash.get (stmt.getBoolExpr()));

}

/////////////////////////////////////////////

// Definition of if_stmt

public void outAIfStmt (AIfStmt stmt)

{ atom ("LBL", (Integer) hash.get (stmt.getBoolExpr())); } // Target for bool_expr’s TST

// override the case of if_else_stmt

public void caseAIfElseStmt (AIfElseStmt node)

{ Integer lbl = lalloc();

inAIfElseStmt (node);

if (node.getIf() != null) node.getIf().apply(this);

if (node.getLPar() != null) node.getLPar().apply(this);

if (node.getBoolExpr() != null)node.getBoolExpr().apply(this);

if (node.getRPar() != null) node.getRPar().apply(this);

if (node.getStmtNoShortIf() != null)

{ node.getStmtNoShortIf().apply(this);

atom ("JMP", lbl); // Jump over else part

atom ("LBL", (Integer) hash.get (node.getBoolExpr()));

}

if (node.getElse() != null) node.getElse().apply(this);

if (node.getStmt() != null) node.getStmt().apply(this);

atom ("LBL", lbl);
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outAIfElseStmt (node);

}

// override the case of if_else_stmt_no_short_if

public void caseAIfElseStmtNoShortIf (AIfElseStmtNoShortIf node)

{ Integer lbl = lalloc();

inAIfElseStmtNoShortIf (node);

if (node.getIf() != null) node.getIf().apply(this);

if (node.getLPar() != null) node.getLPar().apply(this);

if (node.getBoolExpr() != null)node.getBoolExpr().apply(this);

if (node.getRPar() != null) node.getRPar().apply(this);

if (node.getIf1() != null)

{ node.getIf1().apply(this);

atom ("JMP", lbl); // Jump over else part

atom ("LBL", (Integer) hash.get (node.getBoolExpr()));

}

if (node.getElse() != null) node.getElse().apply(this);

if (node.getIf2() != null) node.getIf2().apply(this);

atom ("LBL", lbl);

outAIfElseStmtNoShortIf (node);

}

///////////////////////////////////////////////////

// Definition of bool_expr

public void outABoolExpr (ABoolExpr node)

{ Integer lbl = lalloc();

hash.put (node, lbl);

atom ("TST", (Integer) hash.get(node.getExpr()),

(Integer) hash.get(node.getRight()),

zero,

// Negation of a comparison code is 7 - code.

new Integer (7 - getComparisonCode (node.getCompare().toString())),

lbl);

}

////////////////////////////////////////////////

// Definition of expr

public void outAAssnExpr (AAssnExpr node)

// out of alternative {assn} in expr

{ hash.put (node, hash.get (node.getAssignExpr())); }

public void outARvalExpr (ARvalExpr node)

// out of alternative {rval} in expr
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{ hash.put (node, hash.get (node.getRvalue())); }

int getComparisonCode (String cmp)

// Return the integer comparison code for a comparison

{ if (cmp.indexOf ("==")>=0) return 1;

if (cmp.indexOf ("<")>=0) return 2;

if (cmp.indexOf (">")>=0) return 3;

if (cmp.indexOf ("<=")>=0) return 4;

if (cmp.indexOf (">=")>=0) return 5;

if (cmp.indexOf ("!=")>=0) return 6;

return 0; // this should never occur

}

////////////////////////////////////////////////

// Definition of assign_expr

public void outAAssignExpr (AAssignExpr node)

// Put out the MOV atom

{ Integer assignTo = getIdent (node.getIdentifier());

atom ("MOV", (Integer) hash.get (node.getExpr()),

zero,

assignTo);

hash.put (node, assignTo);

}

////////////////////////////////////////////////

// Definition of rvalue

public void outAPlusRvalue (APlusRvalue node)

{// out of alternative {plus} in Rvalue, generate an atom ADD.

Integer i = alloc();

hash.put (node, i);

atom ("ADD", (Integer)hash.get(node.getRvalue()),

(Integer) hash.get(node.getTerm()) , i);

}

public void outAMinusRvalue(AMinusRvalue node)

{// out of alternative {minus} in Rvalue, generate an atom SUB.

Integer i = alloc();

hash.put (node, i);

atom ("SUB", (Integer) hash.get(node.getRvalue()),

(Integer) hash.get(node.getTerm()), i);

}
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public void outATermRvalue (ATermRvalue node)

// Attribute of the rvalue is the same as the term.

{ hash.put (node, hash.get (node.getTerm())); }

////////////////////////////////////////////////

// Definition of term

public void outAMultTerm (AMultTerm node)

{// out of alternative {mult} in Term, generate an atom MUL.

Integer i = alloc();

hash.put (node, i);

atom ("MUL", (Integer)hash.get(node.getTerm()),

(Integer) hash.get(node.getFactor()) , i);

}

public void outADivTerm(ADivTerm node)

{// out of alternative {div} in Term, generate an atom DIV.

Integer i = alloc();

hash.put (node, i);

atom ("DIV", (Integer) hash.get(node.getTerm()),

(Integer) hash.get(node.getFactor()), i);

}

public void outAFacTerm (AFacTerm node)

{ // Attribute of the term is the same as the factor

hash.put (node, hash.get(node.getFactor()));

}

Map <Double, Integer> nums = new HashMap <Double, Integer> ();

Map <String, Integer > identifiers = new HashMap <String, Integer> ();

final int MAX_MEMORY = 1024;

Double memory [] = new Double [MAX_MEMORY];

int memHigh = 0;

// No, only memory needs to remain for codegen.

// Maintain a hash table of numeric constants, to avoid storin

g// the same number twice.

// Move the number to a run-time memory location.

// That memory location will be the attribute of the Number token.

public void caseTNumber(TNumber num)

{ Integer loc;

Double dnum;
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// The number as a Double

dnum = new Double (num.toString());

// Get its memory location

loc = (Integer) nums.get (dnum);

if (loc==null) // Already in table?

{ loc = alloc(); // No, install in table of nums

nums.put (dnum, loc);

// Store value in run-time memory

memory[loc.intValue()] = dnum;

// Retain highest memory loc

if (loc.intValue() > memHigh)

memHigh = loc.intValue();

}

hash.put (num, loc); // Set attribute to move up tree

}

Integer getIdent(TIdentifier id)

// Get the run-time memory location to which this id is bound

{ Integer loc;

loc = identifiers.get (id.toString());

if (loc==null)

System.err.println ("Error: " + id +

" has not been declared");

return loc;

}

////////////////////////////////////////////////

// Definition of factor

public void outAParsFactor (AParsFactor node)

{ hash.put (node, hash.get (node.getExpr())); }

// Unary + doesn’t need any atoms to be put out.

public void outAUplusFactor (AUplusFactor node)

{ hash.put (node, hash.get (node.getFactor())); }

// Unary - needs a negation atom (NEG).

public void outAUminusFactor (AUminusFactor node)

{ Integer loc = alloc(); // result of negation

atom ("NEG", (Integer)hash.get(node.getFactor()), zero, loc);

hash.put (node, loc);

}

public void outAIdFactor (AIdFactor node)

{ hash.put (node, getIdent (node.getIdentifier())); }
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public void outANumFactor (ANumFactor node)

{ hash.put (node, hash.get (node.getNumber())); }

///////////////////////////////////////////////////////////////////

// Send the run-time memory constants to a file for use by the code generator.

void outConstants()

{ FileOutputStream fos = null;

DataOutputStream ds = null;

int i;

try

{ fos = new FileOutputStream ("constants");

ds = new DataOutputStream (fos);

}

catch (IOException ioe)

{ System.err.println ("IO error opening constants file for output: "

+ ioe);

}

try

{ for (i=0; i<=memHigh ; i++)

if (memory[i]==null) ds.writeDouble (0.0); // a variable is bound here

else

ds.writeDouble (memory[i].doubleValue());

}

catch (IOException ioe)

{ System.err.println ("IO error writing to constants file: "

+ ioe);

}

try { fos.close(); }

catch (IOException ioe)

{ System.err.println ("IO error closing constants file: "

+ ioe);

}

}

//////////////////////////////////////////////////////////

// Put out atoms for conversion to machine code.

// These methods display to stdout, and also write to a

// binary file of atoms suitable as input to the code generator.

void atom (String atomClass, Integer left, Integer right, Integer result)
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{ System.out.println (atomClass + " T" + left + " T" + right + " T" +

result);

Atom atom = new Atom (atomClass, left, right, result);

atom.write(out);

}

void atom (String atomClass, Integer left, Integer right, Integer result,

Integer cmp, Integer lbl)

{ System.out.println (atomClass + " T" + left + " T" + right + " T" +

result + " C" + cmp + " L" + lbl);

Atom atom = new Atom (atomClass, left, right, result, cmp, lbl);

atom.write(out);

}

void atom (String atomClass, Integer lbl)

{ System.out.println (atomClass + " L" + lbl);

Atom atom = new Atom (atomClass, lbl);

atom.write(out);

}

static int avail = 0;

static int lavail = 0;

Integer alloc()

{ return new Integer (++avail); }

Integer lalloc()

{ return new Integer (++lavail); }

}

The file Compiler.java defines the Java class which contains a main method
which invokes the parser to get things started. It is described in section 5.5.

// Compiler.java

// main method which invokes the parser and reads from

// stdin

// March 2003 sdb

package decaf;

import decaf.parser.*;

import decaf.lexer.*;

import decaf.node.*;
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import java.io.*;

public class Compiler

{

public static void main(String[] arguments)

{ try

{ System.out.println();

// Create a Parser instance.

Parser p = new Parser

( new Lexer

( new PushbackReader

( new InputStreamReader(System.in),

1024)));

// Parse the input.

Start tree = p.parse();

// Apply the translation.

tree.apply(new Translation());

System.out.println();

}

catch(Exception e)

{ System.out.println(e.getMessage()); }

}

}

The file Atom.java defines the Java class Atom, which describes an Atom
and permits it to be written to an output file. It is described in section 5.5.

// Atom.java

// Define an atom for output by the Translation class

package decaf;

import java.io.*;

class Atom

// Put out atoms to a binary file in the format expected by

// the old code generator.

{

static final int ADD = 1;

static final int SUB = 2;
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static final int MUL = 3;

static final int DIV = 4;

static final int JMP = 5;

static final int NEG = 10;

static final int LBL = 11;

static final int TST = 12;

static final int MOV = 13;

int cls;

int left;

int right;

int result;

int cmp;

int lbl;

// constructors for Atom

Atom (String cls, Integer l, Integer r, Integer res)

{ setClass (cls);

left = l.intValue();

right = r.intValue();

result = res.intValue();

cmp = 0;

lbl = 0;

}

Atom (String cls, Integer l, Integer r, Integer res,

Integer c, Integer lb)

{ setClass (cls);

left = l.intValue();

right = r.intValue();

result = res.intValue();

cmp = c.intValue();

lbl = lb.intValue();

}

Atom (String cls, Integer lb)

{ setClass (cls);

left = 0;

right = 0;

result = 0;

cmp = 0;

lbl = lb.intValue();

}

}

void setClass (String c)
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// set the atom class as an int code

{ if (c.equals("ADD")) cls = ADD;

else if (c.equals("SUB")) cls = SUB;

else if (c.equals("MUL")) cls = MUL;

else if (c.equals("DIV")) cls = DIV;

else if (c.equals("JMP")) cls = JMP;

else if (c.equals("NEG")) cls = NEG;

else if (c.equals("LBL")) cls = LBL;

else if (c.equals("TST")) cls = TST;

else if (c.equals("MOV")) cls = MOV;

}

void write (AtomFile out)

// write a single atom out to the binary file

{

try

{ out.ds.writeInt (cls);

out.ds.writeInt (left);

out.ds.writeInt (right);

out.ds.writeInt (result);

out.ds.writeInt (cmp);

out.ds.writeInt (lbl);

}

catch (IOException ioe)

{

System.out.println

("IO Error writing to atom file, atom class is "

+ cls + ", error is " + ioe);

}

}

}

The file AtomFile.java defines the Java class AtomFile, which permits output
of an Atom to a file.

// AtomFile.java

// Create the binary output file for atoms

// March 2003 sdb

package decaf;

import java.io.*;

class AtomFile

{
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FileOutputStream fos;

DataOutputStream ds;

String fileName;

AtomFile (String name)

{ fileName = new String (name);

try

{ fos = new FileOutputStream (fileName);

ds = new DataOutputStream (fos);

}

catch (IOException ioe)

{

System.err.println ("IO error opening atom file

(" + fileName + "): " + ioe);

}

}

void close()

{ try

{ ds.close(); }

catch (IOException ioe)

{ System.err.println ("IO error closing atom file

(" + fileName + "): " + ioe);

}

}

}

B.3 Code Generator

The code generator is written in the C language; we re-use the code generator
written for the C/C++ version of this book, and it is stored in the file gen.c.
This program reads from a file named ’atoms’ and a file named ’constants’
which are produced by the Translation class from the syntax tree. It writes
instructions in hex characters for the Mini machine simulator to stdout, the
standard output file. This can be displayed on the monitor, stored in a file, or
piped directly into the Mini simulator as described.

The code generator output also includes a hex location and disassembled op
code on each line. These are ignored by the Mini machine simulator and are
included only so that the student will be able to read the output and understand
how the compiler works.

The first line of output is the starting location of the program instructions.
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Program variables and temporary storage are located beginning at memory lo-
cation 0, consequently the Mini machine simulator needs to know where the first
instruction is located. The function out mem() sends the constants which have
been stored in the target machine memory to stdout. The function dump atom()
is included for debugging purposes only; the student may use it to examine the
atoms produced by the parser.

The code generator solves the problem of forward jump references by making
two passes over the input atoms. The first pass is implemented with a function
named build labels() which builds a table of Labels (a one dimensional array),
associating a machine address with each Label.

The file of atoms is closed and reopened for the second pass, which is
implemented with a switch statement on the input atom class. The impor-
tant function involved here is called gen(), and it actually generates a Mini
machine instruction, given the operation code (atom class codes and corre-
sponding machine operation codes are the same whenever possible), register
number, memory operand address (all addressing is absolute), and a com-
parison code for compare instructions. Register allocation is kept as simple
as possible by always using floating-point register 1, and storing all results
in temporary locations. The source code for the code generator, from the
file gen.c, is shown below. For an updated version of this source code, see
http://cs.rowan.edu/~bergmann/books.

/* gen.c

Code generator for mini architecture.

Input should be a file of atoms, named "atoms"

********************************************************

Modified March 2003 to work with decaf as well as miniC.

sdb

*/

#define NULL 0

#include "mini.h"

#include "miniC.h"

struct atom inp;

long labels[MAXL];

ADDRESS pc=0;

int ok = TRUE;

long lookup (int);

/* code_gen () */

void main() /* March 2003, for Java. sdb */

{ int r;

/* send target machine memory containing constants to stdout */

http://cs.rowan.edu/~bergmann/books
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/* end_data = alloc(0); March 2003 sdb

constants precede instructions */

/* send run-time memory constants to stdout */

out_mem();

atom_file_ptr = fopen ("atoms","rb"); /* open file of atoms */

pc = end_data; /* starting address of instructions */

build_labels(); /* first pass */

fclose (atom_file_ptr);

/* open file of atoms for */

atom_file_ptr = fopen ("atoms","rb");

get_atom(); /* second pass */

pc = end_data;

ok = TRUE;

while (ok)

{

/* dump_atom(); */ /* for debugging, etc */

switch (inp.op) /* check atom class */

{ case ADD: gen (LOD, r=regalloc(),inp.left);

gen (ADD, r, inp.right);

gen (STO, r, inp.result);

break;

case SUB: gen (LOD, r=regalloc(), inp.left);

gen (SUB, r, inp.right);

gen (STO, r, inp.result);

break;

case NEG: gen (CLR, r=regalloc());

gen (SUB, r, inp.left);

gen (STO, r, inp.result);

break;

case MUL: gen (LOD, r=regalloc(), inp.left);

gen (MUL, r, inp.right);

gen (STO, r, inp.result);

break;

case DIV: gen (LOD, r=regalloc(), inp.left);

gen (DIV, r, inp.right);

gen (STO, r, inp.result);

break;

case JMP: gen (CMP, 0, 0, 0);

gen (JMP);

break;

case TST: gen (LOD, r=regalloc(), inp.left);

gen (CMP, r, inp.right, inp.cmp);

gen (JMP);



288 APPENDIX B - DECAF COMPILER

break;

case MOV: gen (LOD, r=regalloc(), inp.left);

gen (STO, r, inp.result);

break;

}

get_atom();

}

gen (HLT);

}

get_atom()

/* read an atom from the file of atoms into inp */

/* ok indicates that an atom was actually read */

{ int n;

n = fread (&inp, sizeof (struct atom), 1, atom_file_ptr);

if (n==0) ok = FALSE;

}

dump_atom()

{ printf ("op: %d left: %04x right: %04x result: %04x cmp: %d dest: %d\n",

inp.op, inp.left, inp.right, inp.result, inp.cmp, inp.dest); }

gen (int op, int r, ADDRESS add, int cmp)

/* generate an instruction to stdout

op is the simulated machine operation code

r is the first operand register

add is the second operand address

cmp is the comparison code for compare instructions

1 is ==

2 is <

3 is >

4 is <=

5 is >=

6 is !=

jump destination is taken from the atom inp.dest

*/

{union {struct fmt instr;

unsigned long word;

} outp;

outp.word = 0;

outp.instr.op = op; /* op code */

if (op!=JMP)

{ outp.instr.r1 = r; /* first operand */
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outp.instr.s2 = add; /* second operand */

}

else outp.instr.s2 = lookup (inp.dest);

/* jump destination */

if (op==CMP) outp.instr.cmp = cmp;

/* comparison code 1-6 */

printf ("%08x\t%04x\t%s\n", outp.word, pc, op_text(op));

pc++;

}

int regalloc ()

/* allocate a register for use in an instruction */

{ return 1; }

build_labels()

/* Build a table of label values on the first pass */

{

get_atom();

while (ok)

{

if (inp.op==LBL)

labels[inp.dest] = pc;

/* MOV and JMP atoms require two instructions,

all other atoms require three instructions. */

else if (inp.op==MOV || inp.op==JMP) pc += 2;

else pc += 3;

get_atom();

}

}

long lookup (int label_num)

/* look up a label in the table and return it’s memory address */

{ return labels[label_num];

}

out_mem()

/* send target machine memory contents to stdout. this is the beginning of the object file, to be

{

ADDRESS i;

data_file_ptr = fopen ("constants","rb");
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/* open file of constants

March 2003 sdb*/

get_data();

printf ("%08x\tLoc\tDisassembled Contents\n", end_data);

/* starting address of instructions */

for (i=0; i<end_data; i++)

printf ("%08x\t%04x\t%8lf\n", memory[i].instr, i,

memory[i].data);

}

void get_data()

/* March 2003 sdb

read a number from the file of constants into inp_const

and store into memory.

*/

{ int i,status=1;

double inp_const;

for (i=0; status; i++)

{ status = fread (&inp_const, sizeof (double), 1, data_file_ptr);

memory[i].data = inp_const ;

}

end_data = i-1;

}

char * op_text(int operation)

/* convert op_codes to mnemonics */

{

switch (operation)

{ case CLR: return "CLR";

case ADD: return "ADD";

case SUB: return "SUB";

case MUL: return "MUL";

case DIV: return "DIV";

case JMP: return "JMP";

case CMP: return "CMP";

case LOD: return "LOD";

case STO: return "STO";

case HLT: return "HLT";

}

}



Appendix C - Mini
Simulator

The Mini machine simulator is simply a C program stored in the file mini.c.
It reads instructions and data in the form of hex characters from the standard
input file, stdin. The instruction format is as specified in Section 6.5.1, and is
specified with a structure called fmt in the header file, mini.h.

The simulator begins by calling the function boot(), which loads the Mini
machine memory from the values in the standard input file, stdin, one memory
location per line. These values are numeric constants, and zeroes for program
variables and temporary locations. The boot() function also initializes the
program counter, PC (register 1), to the starting instruction address.

The simulator fetches one instruction at a time into the instruction register,
ir, decodes the instruction, and performs a switch operation on the operation
code to execute the appropriate instruction. The user interface is designed
to allow as many instruction cycles as the user wishes, before displaying the
machine registers and memory locations. The display is accomplished with the
dump() function, which sends the Mini CPU registers, and the first sixteen
memory locations to stdout so that the user can observe the operation of the
simulated machine. The memory locations displayed can be changed easily by
setting the two arguments to the dumpmem() function. The displays include
both hex and decimal displays of the indicated locations.

As the user observes a program executing on the simulated machine, it is
probably helpful to watch the memory locations associated with program vari-
ables in order to trace the behavior of the original MiniC program. Though
the compiler produces no memory location map for variables, their locations
can be determined easily because they are stored in the order in which they
are declared, beginning at memory location 3. For example, the program that
computes the cosine function begins as shown here:

... public static void main (String [] args)

{ float cos, x, n, term, eps, alt;

In this case, the variables cos, x, n, term, eps, and alt will be stored in that
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order in memory locations 3 through 8.
The source code for the Mini machine is in the file mini.c and is shown below:

/* simulate the Mini architecture */

/* 32-bit word addressable machine, with 16 general registers and

16 floating-point registers.

r1: program counter

ir: instruction register

r0-r15: general registers (32 bits)

fpr0-fpr15: floating-point registers (32 bits)

instruction format:

bits function

0-3 opcode 1 r1 = r1+s2

2 r1 = r1-s2

4 r1 = r1*s2

5 r1 = r1/s2

7 pc = S2 if flag JMP

8 flag = r1 cmp s2 CMP

9 r1 = s2 Load

10 s2 = r1 Store

11 r1 = 0 Clear

4 mode 0 s2 is 20 bit address

1 s2 is 4 bit reg (r2) and 16 bit offset (o2)

5-7 cmp 0 always true

1 ==

2 <

3 >

4 <=

5 >=

6 !=

8-11 r1 register address for first operand

12-31 s2 storage adress if mode=0

12-15 r2 part of storage address if mode=1

16-31 o2 rest of storage address if mode=1

if mode=1, s2 = c(r2) + o2 */

#include <stdio.h>

#include mini.h

#define PC reg[1]

FILE * tty; /* read from keyboard */
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unsigned long addr;

unsigned int flag, r2, o2;

main ()

{

int n = 1, count;

boot(); /* load memory from stdin */

tty = fopen (/dev/tty, r); /* read from keyboard even

redirected */

while (n>0)

{

for (count = 1; count<=n; count++)

{ /* fetch */

ir.full32 = memory[PC++].instr;

if (ir.instr.mode==1)

{ o2 = ir.instr.s2 & 0x0ffff;

r2 = ir.instr.s2 & 0xf0000;

addr = reg[r2] + o2;}

else addr = ir.instr.s2;

switch (ir.instr.op)

{ case ADD: fpreg[ir.instr.r1].data = fpreg[ir.instr.r1].data +

memory[addr].data;

break;

case SUB: fpreg[ir.instr.r1].data = fpreg[ir.instr.r1].data -

memory[addr].data;

break;

case MUL: fpreg[ir.instr.r1].data = fpreg[ir.instr.r1].data *

memory[addr].data;

break;

case DIV: fpreg[ir.instr.r1].data = fpreg[ir.instr.r1].data /

memory[addr].data;

break;

case JMP: if (flag) PC = addr; /* conditional jump */

break;

case CMP: switch (ir.instr.cmp)

{case 0: flag = TRUE; /* unconditional */

break;

case 1: flag = fpreg[ir.instr.r1].data == memory[addr].data;

break;

case 2: flag = fpreg[ir.instr.r1].data < memory[addr].data;

break;
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case 3: flag = fpreg[ir.instr.r1].data > memory[addr].data;

break;

case 4: flag = fpreg[ir.instr.r1].data <= memory[addr].data;

break;

case 5: flag = fpreg[ir.instr.r1].data >= memory[addr].data;

break;

case 6: flag = fpreg[ir.instr.r1].data != memory[addr].data;

}

case LOD: fpreg[ir.instr.r1].data = memory[addr].data;

break;

case STO: memory[addr].data = fpreg[ir.instr.r1].data;

break;

case CLR: fpreg[ir.instr.r1].data = 0.0;

break;

case HLT: n = -1;

}

}

dump ();

printf ("Enter number of instruction cycles, 0 for no change, or -1 to quit\n");

/* read from keyboard if stdin is redirected */

fscanf (tty,"%d", &count);

if (count!=0 && n>0) n = count;

}

}

void dump ()

{ dumpregs();

dumpmem(0,15);

}

void dumpregs ()

{int i;

char * pstr;

printf ("ir = %08x\n", ir.full32);

for (i=0; i<8; i++)

{ if (i==1) pstr = PC = ; else pstr = ;

printf ("%s reg[%d] = %08x = %d\tfpreg[%d] = %08x = %e\n",

pstr,i,reg[i],reg[i],i,fpreg[i].instr,fpreg[i].data);

}

}

void dumpmem(int low, int high)

{int i;

char * f;
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low = low/4*4;

high = (high+4)/4*4 - 1;

if (flag) f = "TRUE"; else f = "FALSE";

printf ("memory\t\t\t\t\tflag = %s\naddress\t\tcontents\n",f);

for (i=low; i<=high; i+=4)

printf ("%08x\t%08x %08x %08x %08x\n\t\t%8e %8e %8e %8e\n",

i,memory[i].instr,memory[i+1].instr,memory[i+2].instr,

memory[i+3].instr, memory[i].data, memory[i+1].data,

memory[i+2].data,

memory[i+3].data);

}

void boot()

/* load memory from stdin */

{ int i = 0;

scanf ("%8lx%*[^\n]\n", &PC); /* starting address of instructions */

while (EOF!=scanf ("%8lx%*[^\n]\n", &memory[i++].instr));

}

The only source files that have not been displayed are the header files. The
file miniC.h contains declarations, macros, and includes which are needed by the
compiler but not by the simulator. The file mini.h contains information needed
by the simulator.

The header file miniC.h is shown below:

/* Size of hash table for identifier symbol table */

#define HashMax 100

/* Size of table of compiler generated address labels */

#define MAXL 1024

/* memory address type on the simulated machine */

typedef unsigned long ADDRESS;

/* Symbol table entry */

struct Ident

{char * name;

struct Ident * link;

int type; /* program name = 1,

integer = 2,

real = 3 */

ADDRESS memloc;};
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/* Symbol table */

struct Ident * HashTable[HashMax];

/* Linked list for declared identifiers */

struct idptr

{struct Ident * ptr;

struct idptr * next;

};

struct idptr * head = NULL;

int dcl = TRUE; /* processing the declarations section */

/* Binary search tree for numeric constants */

struct nums

{ADDRESS memloc;

struct nums * left;

struct nums * right;};

struct nums * numsBST = NULL;

/* Record for file of atoms */

struct atom

{int op; /* atom classes are shown below */

ADDRESS left;

ADDRESS right;

ADDRESS result;

int cmp; /* comparison codes are 1-6 */

int dest;

};

/* ADD, SUB, MUL, DIV, and JMP are also atom classes */

/* The following atom classes are not op codes */

#define NEG 10

#define LBL 11

#define TST 12

#define MOV 13

FILE * atom_file_ptr;

ADDRESS avail = 0, end_data = 0;

int err_flag = FALSE; /* has an error been detected? */

The header file mini.h is shown below:

#define MaxMem 0xffff

#define TRUE 1
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#define FALSE 0

/* Op codes are defined here: */

#define CLR 0

#define ADD 1

#define SUB 2

#define MUL 3

#define DIV 4

#define JMP 5

#define CMP 6

#define LOD 7

#define STO 8

#define HLT 9

/* Memory word on the simulated machine may be treated as numeric data or as an instruction */

union { float data;

unsigned long instr;

} memory [MaxMem];

/* careful! this structure is machine dependent! */

struct fmt

{ unsigned int s2: 20;

unsigned int r1: 4;

unsigned int cmp: 3;

unsigned int mode: 1;

unsigned int op: 4;

}

;

union {

struct fmt instr;

unsigned long full32;

} ir;

unsigned long reg[8];

union { float data;

unsigned long instr;

} fpreg[8];
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∗
reflexive transitive closure of a re-

lation, 93
regular expression, 33

+
restricted closure in sablecc, 52
union
of sets in sablecc, 51

union of regular expressions, 32
− >

state transition in sablecc, 55
▽

bottom of stack marker, 75
ǫ

null string, 28
ǫ rule

selection set, 103
←֓

pushdown machine end marker, 75
φ

empty set, 28

absolute address modes
Mini architecure, 214

action symbol
in translation grammars, 128

action table
LR parser, 167

actions
for finite state machines(, 42
for finite state machines), 45

ADD
Mini instruction, 215

ADD atom, 201
address modes

Mini, 214
algebraic optimization, 241

algebraic transformation
optimization, 233

alphabet, 67
ambiguity

dangling else, 85
in arithmetic expressions, 85
in programming languages, 85–87

ambiguous expression, 221
ambiguous grammar, 72
architecture, 202
arithmetic expression

parsing top down, 127
arithmetic expressions

attributed translation grammar, 139–
143

LL(1) grammar, 120
LR parsing tables, 168
parsing bottom up, 168
parsing top down, 117
translation grammar, 128

arrays, 188–192
assembly language, 1
assignment, 144, 146
atom, 9

JMP, 144
label, 10
LBL, 144
TST, 144

Atom.java, 274
AtomFile.java, 276
attribute computation rule, 134
attributed derivation tree, 135
attributed grammar, 134–138

inherited attributes, 135
recursive descent, 136–138
synthesized attributes, 135

attributed translation grammar
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arithmetic expressions, 143

back end, 197, 221
Backus-Naur Form, 72
basic block, 223–230

construction from DAG, 228
BDW

selection sets for LL(1) grammars,
109

Begins Directly With
selection sets for LL(1) grammars,

109
Begins With

selection sets for LL(1) grammars,
110

Big C notation for a compiler, 6
binary search tree, 46
bisect.decaf, 258
BNF, 72
Boolean expressions, 144
boot()

Mini simulator, 283
bootstrapping, 19–20
bottom up parsing, 160–195
BW

selection sets for LL(1) grammars,
110

byte code, 13

character constants, 38
Chomsky

grammar classifications, 69–72
closure

of a relation, 92–94
regular expression, 33

CLR
Mini instruction, 215

CMP
Mini instruction, 215

code generation, 13–14, 197–218
atoms to instructions, 201–202
fixup table, 205
forward references, 204
jump table, 205
label table, 204
Mini, 213–217

multiple pass, 204–208
single pass, 204–208

code generator
decaf compiler, 277–282
input, 216
Mini, 217

comments, 38
compare field

Mini instruction format, 215
comparisons

in Decaf expressions, 144
compilation diagram, 18
compile time, 5
compiler, 1

big C notation, 6
implementation techniques, 18–23
phases, 8–16

compiler-compiler, 23
Compiler.java, 273
concatenation

regular expression, 32
confilict

reduce/reduce, 163
shift/reduce, 161

constant folding
optimization, 232

context free grammar, 70
context sensitive grammar, 69
context-free grammar, 71–74
context-free language

deterministic, 81
contributors, vi
control structure

for statement, 150
if statement, 150
while statement, 150

control structures
translation, 149–153

cos.decaf, 256
cross compiling, 20–21

DAG, 223–230
construction algorithm, 225
conversion to block of atoms, 228

dangling else ambiguity, 85
dangling else
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sablecc, 194
shift reduce parser, 164
with sablecc, 194

data flow analysis, 231
dead code

optimization, 231
debugging

and optimization, 222
Decaf, 24–26

code generator
gen(), 278

compiler, 258–282
source code, 259
source files, 258
using sablecc, 258

installing, 258–259
lexical analysis, 61
program example, 256
sablecc, 193–194
syntax analysis, 193–194
top down parser, 155–157

decaf
lexical analysis, 63
tokens
sablecc, 62

decaf compiler
code generatorr, 277–282

Decaf expressions, 144–148
LL(2) grammar, 147
translation grammar, 147

Decaf grammar, 255–256
decaf.grammar source file, 259
DEO

selection sets for LL(1) grammars,
111

derivation, 67
left-most, 73

derivation tree, 72
attributed, 135

deterministic
context-free language, 81
finite state machine, 30
pushdown machine, 75

Direct End Of
selection sets for LL(1) grammars,

111

directed acyclic graph, 223–230
DIV

Mini instruction, 215
dump(), 283
dumpmem(), 283

EBNF
sablecc production, 173

elimination of dead code, 231
embedded action

sablecc, 178
empty set, 28
end marker

in Followed By relation for selec-
tion sets, 113

pushdown machines, 75
End Of

selection sets for LL(1) grammars,
112

EO
selection sets for LL(1) grammars,

112
epsilon, 28
epsilon rule

quasi-simple grammar, 102
selection set, 103
translation grammar, 128

equivalent grammars, 68
expression

ambiguity, 221
expressions

Decaf, 144–148
extended pushdown machine, 77
extended pushdown translator, 77

fact.decaf, 258
FB

selection sets for LL(1) grammars,
112

FDB
selection sets for LL(1) grammars,

111
finite state machine, 28–32

actions, 42–45
deterministic, 30
implemenntation, 40
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table, 30
to process identifiers, 41
to process key words, 42
to process numeric constants, 41

First(right side)
selection sets for LL(1) grammars,

111
First(x) set

selection sets for LL(1) grammars,
110

fixup table
code generation, 205

Fol(A), 113
follow set, 103

Follow set
selection sets for LL(1) grammars,

113
follow set, 103
Followed By

selection sets for LL(1) grammars,
112

Followed Directly By
selection sets for LL(1) grammars,

111
for statement

translation, 150
formal languages, 27–35
forward references

code generation, 204
in code generator for Decaf, 278

free format, 40
front end, 21, 197

gen()
in Decaf code generator, 278

gen.c, 258
global optimization, 12–13, 220, 223–

234
goto table

LR parser, 167
grammar, 67–74

ambiguous, 72
attributed, 134–138
Chomsky classifications, 69–72
classes, 69–72
context free, 70

context sensitive, 69
context-free, 71–74
equivalent, 68
LL(1), 109–116
LR, 161
right linear, 70
simple, 94–101
translation, 128–133
unrestricted, 69

handle
shift reduce parsing, 161

hash function, 47
hash table, 47
HashTable

sablecc, 180
helper declarations

sablecc, 53
high-level language

advantages over machine language,
3

HLT
Mini instruction, 215

if statement
ambiguity, 85
translation, 150

ignored tokens
sablecc, 57

implementation techniques, 18–23
bootstrapping, 19–20
compiler-compiler, 23
cross compiling, 20–21

infix to postfix translation, 128
inherited attributes, 135
input alphabet, 67
instruction formats

Mini, 214
instruction register

Mini simulator, 283
intermediate form, 13, 21
interpreter, 3

Java Virtual Machine, 23
JMP

Mini instruction, 215
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JMP atom, 144, 149
jump over jump optimization, 240
jump table

code generation, 205

key words, 37
finite state machine, 42

Kleene ∗
regular expression, 33

label atoms, 10
label table

code generation, 204
language, 67–74

specified by a grammar, 67
languages

formal, 27–35
natural, 27

LBL atom, 144, 149
left context

sablecc, 54
left recursion, 119
left-most derivation, 73
lex, 49
lexeme, 8, 37
lexical analysis, 27–65

Decaf, 61
decaf, 63
with finite state machines, 40–45
with sablecc, 49–60

lexical analysis , 8–9
lexical item, 8, 37
lexical table

as a binary search tree, 46
as a hash table, 47

lexical tables, 46–48
lexical token, 37–39
LL(1) grammar, 109–116

pushdown machine, 113
recursive descent parser, 114

LL(2) grammar
for Decaf expressions, 147

load/store optimization, 239
local optimization, 14–16, 220, 238–241
LOD

Mini instruction, 215

loop invariant, 12
loop invariant optimization, 231
LR grammar, 161
LR parser

action table, 167
goto table, 167

LR parsing with tables, 167–172
LR(k) parser, 164
lvalue, 146

machine language, 1
advantages over high-level language,

3
mathematical transformations

optimization, 231–233
matrix reference, 188
memory

Mini simulator, 283
Mini

operation codes, 214
simulator, 283–289

Mini architecture, 214–216
address modes, 214
code generation, 213–217
instruction formats, 214

Mini code generator, 217
Mini simulator, 26
mini.c, 283
mini.h, 283, 287, 288
miniC.h , 287
MOV atom, 202
MUL

Mini instruction, 215
MUL atom, 203
multiple pass code generation, 204–208
multiple pass compiler, 15
MutableInt, 136

natural language, 27
NEG atom, 216
newlab, 154, 155
newline, 38
non-terminal symbol

grammar, 67
nondeterministic pushdown machine, 75,

82
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normal form
for derivations, 73

null string, 28, 68
nullable nonterminals, 109
nullable rules, 109
numeric constant

in Mini simulator, 283
numeric constants, 37, 38

object language, 2
object program, 2
operation codes

Mini computer, 283
operators, 37
optimization, 220–242

algebraic, 241
algebraic transformation, 233
constant folding, 232
elimination of dead code, 231
global, 12–13, 220, 223–234
impact on debugging, 222
jump over jump, 240
load/store, 239
local, 14–16, 220, 238–241
load/store, 14

loop invariant, 12, 231
mathematical transformations, 231–

233
reduction in strength, 232
simple algebraic, 241
unreachable code, 230

output
for pushdown machines, 77

palindrome, 68
with center marker, 81

parenthesis language, 75
parity bit generator, 43
parity checker, 30
parser, 9
parsing

arithmetic expressions top down,
117–127

bottom up, 160–195
LL(1) grammar, 109
quasi-simple grammar, 103

shift reduce, 160–166
simple grammar, 95
top-down, 91–158
with sablecc, 173–183

parsing algorithm, 89
parsing iterative constructs, 155
parsing problem, 88
PC

in Mini simulator, 283
pc

program counter in Mini code gen-
erator, 217

peephole optimization, see local opti-
mization

phases of a compiler, 8–16
pop operation, 74
postfix expression, 77
postfix expressions

example with sablecc, 175
prefix expression, 134
production

seerewriting rule, 67
Productions section

sablecc, 173
program counter in Mini code genera-

tor, 217
program variables

Mini simulator, 283
programming language, 1
push operation, 74
pushdown machine, 74–82

deterministic, 75
exit, 75
extended, 77
LL(1) grammar, 113
quasi-simple grammar, 103
translation grammar, 129

pushdown translator
extended, 77

quasi-simple grammar
pushdown machine, 103
recursive descent parser, 105

range of characters
sablecc token, 51
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recursive descent parser
LL(1) grammar, 114
quasi-simple grammar, 105
translation grammar, 129

reduce operation
parsing bottom up, 160

reduce/reduce conflict, 163
reduction in strength optimization, 232
reflexive

relation property, 92
reflexive transitive closure of a relation,

92
register allocation, 13, 209–213

smart, 210
register-displacement

addressing mode in Mini, 214
registers

Mini simulator, 283
regular expression, 32–35

closure operation, 33
concatenation operation, 32
in sablecc token, 52
Kleene ∗, 33
precedence of operations, 33
union operation, 32

relation, 92–94
reserved words, 37
rewriting rule

grammar, 67
right context

sablecc, 54
right linear grammar, 70
right-most derivation, 73
RISC machine, 210
run time, 5

sablecc
advantages over javacc, 49
altering of names, 179
dangling else, 194
Decaf, 193–194
decaf compiler, 258
EBNF production, 173
embedded action, 178
execution, 49
files needed, 173

helper declarations, 53
ignored tokens, 57
input file, 50–51
invoke, 58
left context, 54
lexical analysis, 49–60
parsing, 173–183
Productions section, 173
alternatives, 175
patterns, 175

right context, 54
source file structure, 173
state declaration, 54
token declarations, 51–53

sablecc token
precedence rules, 52
range of characters, 51
regular expression, 52

scanner, see lexical analysis
Selection set

selection sets for LL(1) grammars,
113

selection set
arithmetic expressions, 118–124
epsilon rule, 103
LL(1) grammar, 109

semantic analysis, 9, 193
semantics, 128–133
sentential form, 67
sequential search, 46
set, 27

empty, 28
shift operation

parsing bottom up, 160
shift reduce parsing, 160–166
shift/reduce conflict, 161
side effects, 222
simple algebraic optimization, 239, 241
simple grammar, 94–101
single pass code generation, 204–208
single pass compiler, 16
software

distribution rights, 217
source language, 2
source program, 2
special characters, 38
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stack
for pushdown machine, 74

starting state
pushdown machine, 74

state
pushdown machine, 74

state declaration
sablecc, 54

STO
Mini instruction, 215

string, 28
SUB

Mini instruction, 215
SUB atom, 216
symbol table, 38

references during parse, 190
syntax, 2
syntax analysis, 66–89

Decaf, 193–194
syntax tree, 11

weighted, 210
syntax-directed translation, 128–133
synthesized attributes, 135

target machine, 2
mini, 283–289

terminal symbol
grammar, 67

token, 8, 37–39
token declarations

sablecc, 51–53
top-down parsing, 91–158
transitive

relation property, 93
translating arithmetic expressions with

recursive descent, 141
Translation, 194
translation

atoms to instructions, 201–202
control structures(, 149
control structures), 153

translation grammar, 128–133
arithmetic expressions, 128
Decaf expressions, 147
epsilon rule, 128
pushdown machine, 129

recursive descent, 129
Translation.java, 263

Decaf, 193
TST atom, 144, 149, 201

union
of sets in sablecc, 51
regular expression, 32

unreachable code, 12
unreachable code optimization, 230
unrestricted grammar, 69
user interface, 1

value
of token, 27

weighted syntax tree, 210
while statement

translation, 150
white space, 38
word, 37

yacc, 49
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